22 research outputs found

    A mechanism for the rapid development of intracranial aneurysms

    No full text

    Substrate generation for endonucleases of CRISPR/cas systems.

    Get PDF
    The interaction of viruses and their prokaryotic hosts shaped the evolution of bacterial and archaeal life. Prokaryotes developed several strategies to evade viral attacks that include restriction modification, abortive infection and CRISPR/Cas systems. These adaptive immune systems found in many Bacteria and most Archaea consist of clustered regularly interspaced short palindromic repeat (CRISPR) sequences and a number of CRISPR associated (Cas) genes (Fig. 1) (1-3). Different sets of Cas proteins and repeats define at least three major divergent types of CRISPR/Cas systems (4). The universal proteins Cas1 and Cas2 are proposed to be involved in the uptake of viral DNA that will generate a new spacer element between two repeats at the 5' terminus of an extending CRISPR cluster (5). The entire cluster is transcribed into a precursor-crRNA containing all spacer and repeat sequences and is subsequently processed by an enzyme of the diverse Cas6 family into smaller crRNAs (6-8). These crRNAs consist of the spacer sequence flanked by a 5' terminal (8 nucleotides) and a 3' terminal tag derived from the repeat sequence (9). A repeated infection of the virus can now be blocked as the new crRNA will be directed by a Cas protein complex (Cascade) to the viral DNA and identify it as such via base complementarity(10). Finally, for CRISPR/Cas type 1 systems, the nuclease Cas3 will destroy the detected invader DNA (11,12) . These processes define CRISPR/Cas as an adaptive immune system of prokaryotes and opened a fascinating research field for the study of the involved Cas proteins. The function of many Cas proteins is still elusive and the causes for the apparent diversity of the CRISPR/Cas systems remain to be illuminated. Potential activities of most Cas proteins were predicted via detailed computational analyses. A major fraction of Cas proteins are either shown or proposed to function as endonucleases (4). Here, we present methods to generate crRNAs and precursor-cRNAs for the study of Cas endoribonucleases. Different endonuclease assays require either short repeat sequences that can directly be synthesized as RNA oligonucleotides or longer crRNA and pre-crRNA sequences that are generated via in vitro T7 RNA polymerase run-off transcription. This methodology allows the incorporation of radioactive nucleotides for the generation of internally labeled endonuclease substrates and the creation of synthetic or mutant crRNAs. Cas6 endonuclease activity is utilized to mature pre-crRNAs into crRNAs with 5'-hydroxyl and a 2',3'-cyclic phosphate termini

    N-myc oncogene overexpression down-regulates IL-6; evidence that IL-6 inhibits angiogenesis and supresses neuroblastoma tumor growth

    No full text
    Angiogenesis is an indispensable prerequisite for the progression and metastasis of solid malignancies. Tumor angiogenesis appears to be governed by alterations of tumor suppressor or oncogenes operant in a broad range of tumors. We have addressed this issue in neuroblastoma, a malignancy characterized by the near-exclusive amplification and overexpression of the N-Myc oncogene. Here, we report that N-Myc overexpression results in down-regulation of interleukin-6 (IL-6) and that IL-6 is an inhibitor of endothelial cell proliferation and VEGF-induced rabbit corneal angiogenesis. STAT3 is instrumental for IL-6 activity as infection with adenoviruses expressing a phosphorylation deficient STAT3 mutant renders endothelial cells insensitive to the antiproliferative action of IL-6. Finally, though IL-6 does not influence neuroblastoma cell growth, IL-6-expressing xenograft tumors in mice exhibit reduced neovascularization and suppressed growth. Our data shed new light on the mechanisms by which N-myc oncogene amplification enhances the malignant phenotype in neuroblastomas
    corecore