92 research outputs found
Collective Operations on Number-Membered Sets
The article starts with definitions of sets of opposite and inverse
numbers of a given number membered set. Next, collective addition, subtraction,
multiplication and division of two sets are defined. Complex numbers
cases and extended real numbers ones are introduced separately and unified for
reals. Shortcuts for singletons cases are also defined.Institute of Computer Science, University of BiaĆystok, Sosnowa 64, 15-887 BiaĆystok PolandGrzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.Andrzej Trybulec. On the sets inhabited by numbers. Formalized Mathematics, 11(4):341-347, 2003.Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990
Some Properties of p-Groups and Commutative p-Groups
This article describes some properties of p-groups and some properties of commutative p-groups.Liang Xiquan - Qingdao University of Science and Technology, ChinaLi Dailu - Qingdao University of Science and Technology, ChinaGrzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.RafaĆ Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887-890, 1990.Marco Riccardi. The Sylow theorems. Formalized Mathematics, 15(3):159-165, 2007, doi:10.2478/v10037-007-0018-3.Dariusz Surowik. Cyclic groups and some of their properties - part I. Formalized Mathematics, 2(5):623-627, 1991.Wojciech A. Trybulec. Classes of conjugation. Normal subgroups. Formalized Mathematics, 1(5):955-962, 1990.Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.Wojciech A. Trybulec. Subgroup and cosets of subgroups. Formalized Mathematics, 1(5):855-864, 1990.Wojciech A. Trybulec. Commutator and center of a group. Formalized Mathematics, 2(4):461-466, 1991.Wojciech A. Trybulec. Lattice of subgroups of a group. Frattini subgroup. Formalized Mathematics, 2(1):41-47, 1991.Wojciech A. Trybulec and MichaĆ J. Trybulec. Homomorphisms and isomorphisms of groups. Quotient group. Formalized Mathematics, 2(4):573-578, 1991.Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990
On Rough Subgroup of a Group
This article describes a rough subgroup with respect to a normal
subgroup of a group, and some properties of the lower and the upper approximations
in a group.Liang Xiquan - Qingdao University of Science and Technology, ChinaLi Dailu - Qingdao University of Science and Technology, ChinaWojciech A. Trybulec. Classes of conjugation. Normal subgroups. Formalized Mathematics, 1(5):955-962, 1990.Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.Wojciech A. Trybulec. Subgroup and cosets of subgroups. Formalized Mathematics, 1(5):855-864, 1990.Wojciech A. Trybulec. Lattice of subgroups of a group. Frattini subgroup. Formalized Mathematics, 2(1):41-47, 1991.Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990
Formalization of Integral Linear Space
In this article, we formalize integral linear spaces, that is a linear space with integer coefficients. Integral linear spaces are necessary for lattice problems, LLL (Lenstra-Lenstra-LovĂĄsz) base reduction algorithm that outputs short lattice base and cryptographic systems with lattice [8].Futa Yuichi - Shinshu University, Nagano, JapanOkazaki Hiroyuki - Shinshu University, Nagano, JapanShidama Yasunari - Shinshu University, Nagano, JapanGrzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.CzesĆaw ByliĆski. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.Noboru Endou, Takashi Mitsuishi, and Yasunari Shidama. Dimension of real unitary space. Formalized Mathematics, 11(1):23-28, 2003.Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.JarosĆaw Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.Daniele Micciancio and Shafi Goldwasser. Complexity of lattice problems: A cryptographic perspective (the international series in engineering and computer science). 2002.Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.MichaĆ J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.Wojciech A. Trybulec. Basis of real linear space. Formalized Mathematics, 1(5):847-850, 1990.Wojciech A. Trybulec. Linear combinations in real linear space. Formalized Mathematics, 1(3):581-588, 1990.Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.Hiroshi Yamazaki and Yasunari Shidama. Algebra of vector functions. Formalized Mathematics, 3(2):171-175, 1992
The Geometric Interior in Real Linear Spaces
We introduce the notions of the geometric interior and the centre of mass for subsets of real linear spaces. We prove a number of theorems
concerning these notions which are used in the theory of abstract simplicial complexes.Institute of Informatics, University of BiaĆystok, PolandGrzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.CzesĆaw ByliĆski. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.CzesĆaw ByliĆski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.Agata DarmochwaĆ. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.Noboru Endou, Takashi Mitsuishi, and Yasunari Shidama. Convex sets and convex combinations. Formalized Mathematics, 11(1):53-58, 2003.Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.JarosĆaw Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.Karol PÄ
k. Affine independence in vector spaces. Formalized Mathematics, 18(1):87-93, 2010, doi: 10.2478/v10037-010-0012-z.Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.Wojciech A. Trybulec. Linear combinations in real linear space. Formalized Mathematics, 1(3):581-588, 1990.Wojciech A. Trybulec. Partially ordered sets. Formalized Mathematics, 1(2):313-319, 1990.Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990
Arithmetic Operations on Functions from Sets into Functional Sets
In this paper we introduce sets containing number-valued functions. Different arithmetic operations on maps between any set and such functional sets are later defined.Institute of Computer Science, University of Bialystok, Sosnowa 64, 15-887 Bialystok Polan
Some Operations on Quaternion Numbers
In this article, we give some equality and basic theorems about quaternion numbers, and some special operations.Li Bo - Qingdao University of Science and Technology, ChinaLiang Xiquan - Qingdao University of Science and Technology, ChinaWang Pan - Qingdao University of Science and Technology, ChinaZhuang Yanping - Qingdao University of Science and Technology, ChinaGrzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.CzesĆaw ByliĆski. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.CzesĆaw ByliĆski. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.CzesĆaw ByliĆski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.CzesĆaw ByliĆski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.Fuguo Ge. Inner products, group, ring of quaternion numbers. Formalized Mathematics, 16(2):135-139, 2008, doi:10.2478/v10037-008-0019-x.Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.Xiquan Liang and Fuguo Ge. The quaternion numbers. Formalized Mathematics, 14(4):161-169, 2006, doi:10.2478/v10037-006-0020-1.Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.Andrzej Trybulec and CzesĆaw ByliĆski. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990
Morphology for Image Processing. Part I
In this article we defined mathematical morphology image processing with set operations. First, we defined Minkowski set operations and proved their properties. Next, we defined basic image processing, dilation and erosion proving basic fact about them [5], [8].Yamazaki Hiroshi - Shinshu University, Nagano, JapanByliĆski CzesĆaw - University of BiaĆystok, PolandWasaki Katsumi - Shinshu University, Nagano, JapanCzesĆaw ByliĆski. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.CzesĆaw ByliĆski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.Yuzhong Ding and Xiquan Liang. Preliminaries to mathematical morphology and its properties. Formalized Mathematics, 13(2):221-225, 2005.Noboru Endou, Takashi Mitsuishi, and Yasunari Shidama. Dimension of real unitary space. Formalized Mathematics, 11(1):23-28, 2003.H. J. A. M. Heijimans. Morphological Image Operators. Academic Press, 1994.Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.P. Soille. Morphological Image Analysis: Principles and Applications. Springer, 2003.Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990
Set of Points on Elliptic Curve in Projective Coordinates
In this article, we formalize a set of points on an elliptic curve over GF(p). Elliptic curve cryptography [10], whose security is based on a difficulty of discrete logarithm problem of elliptic curves, is important for information security.Futa Yuichi - Shinshu University, Nagano, JapanOkazaki Hiroyuki - Shinshu University, Nagano, JapanShidama Yasunari - Shinshu University, Nagano, JapanGrzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.JĂłzef BiaĆas. Group and field definitions. Formalized Mathematics, 1(3):433-439, 1990.CzesĆaw ByliĆski. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.CzesĆaw ByliĆski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.CzesĆaw ByliĆski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.Agata DarmochwaĆ. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.G. Seroussi I. Blake and N. Smart. Elliptic Curves in Cryptography. Number 265 in London Mathematical Society Lecture Note Series. Cambridge University Press, 1999.Eugeniusz Kusak, Wojciech LeoĆczuk, and MichaĆ Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.RafaĆ Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887-890, 1990.Konrad Raczkowski and PaweĆ Sadowski. Equivalence relations and classes of abstraction. Formalized Mathematics, 1(3):441-444, 1990.Christoph Schwarzweller. The ring of integers, euclidean rings and modulo integers. Formalized Mathematics, 8(1):29-34, 1999.Christoph Schwarzweller. The binomial theorem for algebraic structures. Formalized Mathematics, 9(3):559-564, 2001.Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97-105, 1990.MichaĆ J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.Edmund Woronowicz and Anna Zalewska. Properties of binary relations. Formalized Mathematics, 1(1):85-89, 1990
Valuation Theory. Part I
In the article we introduce a valuation function over a field [1]. Ring of non negative elements and its ideal of positive elements have been also defined.Bancerek Grzegorz - BiaĆystok Technical University, PolandKobayashi Hidetsune - Department of Mathematics College of Science and Technology, Nihon University, 8 Kanda Surugadai Chiyoda-ku, 101-8308 Tokyo, JapanKorniĆowicz Artur - Institute of Informatics, University of BiaĆystok, Sosnowa 64, 15-887 BiaĆystok, PolandEmil Artin. Algebraic Numbers and Algebraic Functions. Gordon and Breach Science Publishers, 1994.Jonathan Backer, Piotr Rudnicki, and Christoph Schwarzweller. Ring ideals. Formalized Mathematics, 9(3):565-582, 2001.Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.JĂłzef BiaĆas. Properties of fields. Formalized Mathematics, 1(5):807-812, 1990.CzesĆaw ByliĆski. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.CzesĆaw ByliĆski. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.CzesĆaw ByliĆski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.CzesĆaw ByliĆski. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.CzesĆaw ByliĆski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.Artur KorniĆowicz. Quotient rings. Formalized Mathematics, 13(4):573-576, 2005.Eugeniusz Kusak, Wojciech LeoĆczuk, and MichaĆ Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.MichaĆ Muzalewski. Construction of rings and left-, right-, and bi-modules over a ring. Formalized Mathematics, 2(1):3-11, 1991.Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.MichaĆ J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990
- âŠ