8 research outputs found

    Environmental cues and constraints affecting the seasonality of dominant calanoid copepods in brackish, coastal waters: a case study of Acartia, Temora and Eurytemora species in the south-west Baltic

    Get PDF
    Information on physiological rates and tolerances helps one gain a cause-and-effect understanding of the role that some environmental (bottom–up) factors play in regulating the seasonality and productivity of key species. We combined the results of laboratory experiments on reproductive success and field time series data on adult abundance to explore factors controlling the seasonality of Acartia spp., Eurytemora affinis and Temora longicornis, key copepods of brackish, coastal and temperate environments. Patterns in laboratory and field data were discussed using a metabolic framework that included the effects of ‘controlling’, ‘masking’ and ‘directive’ environmental factors. Over a 5-year period, changes in adult abundance within two south-west Baltic field sites (Kiel Fjord Pier, 54°19′89N, 10°09′06E, 12–21 psu, and North/Baltic Sea Canal NOK, 54°20′45N, 9°57′02E, 4–10 psu) were evaluated with respect to changes in temperature, salinity, day length and chlorophyll a concentration. Acartia spp. dominated the copepod assemblage at both sites (up to 16,764 and 21,771 females m−3 at NOK and Pier) and was 4 to 10 times more abundant than E. affinis (to 2,939 m−3 at NOK) and T. longicornis (to 1,959 m−3 at Pier), respectively. Species-specific salinity tolerance explains differences in adult abundance between sampling sites whereas phenological differences among species are best explained by the influence of species-specific thermal windows and prey requirements supporting survival and egg production. Multiple intrinsic and extrinsic (environmental) factors influence the production of different egg types (normal and resting), regulate life-history strategies and influence match–mismatch dynamics

    Growth and development of nauplii and copepodites of the estuarine copepod Acartia tonsa from southern Europe (Ria de Aveiro, Portugal) under saturating food conditions

    No full text
    A temperature-dependent growth model is presented for nauplii and copepodites of the estuarine calanoid copepod Acartia tonsa from southern Europe (Portugal). Development was followed from egg to adult in the laboratory at four temperatures (10, 15, 18 and 22°C) and under saturating food conditions (>1,000 μg C l−1). Development times versus incubation temperature were fitted to a Belehradek’s function, showing that development times decreased with increasing incubation temperature: at 10°C, A. tonsa need 40.3 days to reach adult stage, decreasing to 8.9 days when reared at 22°C. ANCOVA (homogeneity of slopes) showed that temperature (P<0.001) and growth phase (P<0.01) had a significant effect on the growth rate. Over the range of temperatures tested in this study, highest weight-specific growth rates were found during naupliar development (NI–NVI) and varied from 0.185 day−1 (10°C) to 0.880 day−1 (22°C) with a Q 10 equal to 3.66. During copepodite growth (CI–CV), the weight-specific growth rates ranged from 0.125 day−1 (10°C) to 0.488 day−1 (22°C) with a Q 10 equal to 3.12. The weight-specific growth rates (g) followed temperature (T) by a linear relationship and described as ln g=−2.962+0.130 T (r 2=0.99, P<0.001) for naupliar stages and ln g=−3.134+0.114T (r 2=0.97, P<0.001) for copepodite stages. By comparing in situ growth rates (juvenile growth and fecundity) for A. tonsa taken from the literature with the temperature-dependent growth model defined here we suggest that the adult females of A. tonsa are more frequently food limited than juveniles

    The Unquantified Risk of Post-Fire Metal Concentration in Soil: a Review

    No full text
    Forest fire is a natural disturbance that occurs in many terrestrial ecosystems specifically in the semi-arid environments and is considered to be an important cause of environmental change. Though many causes of fire are identified, including lightning, volcanic eruption, power line sparks, etc., human involvement is the most significant factor. Fire events are able to alter the physical, chemical and biogeochemical properties of the soil and surface materials and are able to release major and trace metals into the environment. This may be more significant in mining-affected and industrial landscapes, where elevated concentrations of metals present in the soil. After the fire event, metals become more mobile due to the increase in soil surface exposure and the mobility associated with ash dispersal. This mobility may increase the bioavailability of the metals, which may generate water quality issues and may contribute to human and environmental health concerns. Even though, the influences of fire on many soil properties are well established, the behaviour of metals with respect to fire is not well investigated. However, a few studies report that major and trace metals include Cd, Cr, Co, Cu, Hg, Mn, Ni, Pb, Zn and As are mobilized after fire with increased concentrations in soil and water resources and this might pose a risk to human health and ecosystems. Climate change may increase the intensity, frequency and areal extend of fire events and hence increase the metal concentrations and their potential health impacts. This paper reviews post-fire (wild fire) mobility of metals in soil common in contaminated forest ecosystems. The human and ecological health risks of these metals are also considered. © 2017, Springer International Publishing Switzerland

    Xenopus laevis as a Bioindicator of Endocrine Disruptors in the Region of Central Chile

    No full text
    corecore