137 research outputs found

    And what if gravity is intrinsically quantic ?

    Full text link
    Since the early days of search for a quantum theory of gravity the attempts have been mostly concentrated on the quantization of an otherwise classical system. The two most contentious candidate theories of gravity, sting theory and quantum loop gravity are based on a quantum field theory - the latter is a quantum field theory of connections on a SU(2) group manifold and former a quantum field theory in two dimensional spaces. Here we argue that there is a very close relation between quantum mechanics and gravity. Without gravity quantum mechanics becomes ambiguous. We consider this observation as the evidence for an intrinsic relation between these fundamental laws of nature. We suggest a quantum role and definition for gravity in the context of a quantum universe, and present a preliminary formulation for gravity in a system with a finite number of particles.Comment: 8 pages, 1 figure. To appear in the proceedings of the DICE2008 conference, Castiglioncello, Tuscany, Italy, 22-26 Sep. 2008. V2: some typos remove

    Color Glass Condensate in Brane Models or Don't Ultra High Energy Cosmic Rays Probe 1015eV10^{15}eV Scale ?

    Full text link
    In a previous work hep-ph/0203165 we have studied propagation of relativistic particles in the bulk for some of most popular brane models. Constraints have been put on the parameter space of these models by calculating the time delay due to propagation in the bulk of particles created during the interaction of Ultra High Energy Cosmic Rays with protons in the terrestrial atmosphere. The question was however raised that probability of hard processes in which bulk modes can be produced is small and consequently, the tiny flux of UHECRs can not constrain brane models. Here we use Color Glass Condensate (CGC) model to show that effects of extra dimensions are visible not only in hard processes when the incoming particle hits a massive Kaluza-Klein mode but also through the modification of soft/semi-hard parton distribution. At classical level, for an observer in the CM frame of UHECR and atmospheric hadrons, color charge sources are contracted to a thin sheet with a width inversely proportional to the energy of the ultra energetic cosmic ray hadron and consequently they can see an extra dimension with comparable size. Due to QCD interaction a short life swarm of partons is produced in front of the sheet and its partons can penetrate to the extra-dimension bulk. This reduces the effective density of partons on the brane or in a classical view creates a delay in the arrival of the most energetic particles if they are reflected back due to the warping of the bulk. In CGC approximation the density of swarm at different distance from the classical sheet can be related and therefore it is possible (at least formally) to determine the relative fraction of partons in the bulk and on the brane at different scales. Results of this work are also relevant to the test of brane models in hadron colliders like LHC.Comment: 17 pages, 3 figures. Text is modified to highlight the relation between the distribution gluons at high and low rapidity scales. v3: published versio

    Primordial pairing and binding of superheavy charge particles in the early Universe

    Full text link
    Primordial superheavy particles, considered as the source of Ultra High Energy Cosmic Rays (UHECR) and produced in local processes in the early Universe, should bear some strictly or approximately conserved charge to be sufficiently stable to survive to the present time. Charge conservation makes them to be produced in pairs, and the estimated separation of particle and antiparticle in such pair is shown to be in some cases much smaller than the average separation determined by the averaged number density of considered particles. If the new U(1) charge is the source of a long range field similar to electromagnetic field, the particle and antiparticle, possessing that charge, can form primordial bound system with annihilation timescale, which can satisfy the conditions, assumed for this type of UHECR sources. These conditions severely constrain the possible properties of considered particles.Comment: Latex, 4 pages. The final version to appear in Pis'ma ZhETF (the conditions for the primordial binding are specified, some refs added

    Formulation and constraints on decaying dark matter with finite mass daughter particles

    Full text link
    Decaying dark matter cosmological models have been proposed to remedy the overproduction problem at small scales in the standard cold dark matter paradigm. We consider a decaying dark matter model in which one CDM mother particle decays into two daughter particles, with arbitrary masses. A complete set of Boltzmann equations of dark matter particles is derived which is necessary to calculate the evolutions of their energy densities and their density perturbations. By comparing the expansion history of the universe in this model and the free-streaming scale of daughter particles with astronomical observational data, we give constraints on the lifetime of the mother particle, Γ1\Gamma^{-1}, and the mass ratio between the daughter and the mother particles mD/mMm_{\rm D}/m_{\rm M}. From the distance to the last scattering surface of the cosmic microwave background, we obtain Γ1>\Gamma^{-1}> 30 Gyr in the massless limit of daughter particles and, on the other hand, we obtain mD>m_{\rm D} > 0.97mMm_{\rm M} in the limit Γ10\Gamma^{-1}\to 0. The free-streaming constraint tightens the bound on the mass ratio as (Γ1/102Gyr)((1mD1/mM)/102)3/2(\Gamma^{-1}/10^{-2}{\rm Gyr}) \lesssim ((1-m_{\rm D1}/m_{\rm M})/10^{-2})^{-3/2} for Γ1<H1(z=3)\Gamma^{-1} < H^{-1}(z=3).Comment: 20 pages, 7 figure

    On the growth of perturbations in interacting dark energy and dark matter fluids

    Full text link
    The covariant generalizations of the background dark sector coupling suggested in G. Mangano, G. Miele and V. Pettorino, Mod. Phys. Lett. A 18, 831 (2003) are considered. The evolution of perturbations is studied with detailed attention to interaction rate that is proportional to the product of dark matter and dark energy densities. It is shown that some classes of models with coupling of this type do not suffer from early time instabilities in strong coupling regime.Comment: 11 pages, 2 figures. v3: minor changes, typos fixe

    Testing the Epeak - Eiso relation for GRBs detected by Swift and Suzaku-WAM

    Full text link
    One of the most prominent, yet controversial associations derived from the ensemble of prompt-phase observations of gamma-ray bursts (GRBs) is the apparent correlation in the source frame between the peak energy Epeak) of the nu-F(nu) spectrum and the isotropic radiated energy, Eiso. Since most gamma-ray bursts (GRBs) have Epeak above the energy range (15-150 keV) of the Burst Alert Telescope (BAT) on Swift, determining accurate Epeak values for large numbers of Swift bursts has been difficult. However, by combining data from Swift/BAT and the Suzaku Wide-band All-Sky Monitor (WAM), which covers the energy range from 50-5000 keV, for bursts which are simultaneously detected, one can accurately fit Epeak and Eiso and test the relationship between them for the Swift sample. Between the launch of Suzaku in July 2005 and the end of April 2009, there were 48 gamma-ray bursts (GRBs) which triggered both Swift/BAT and WAM and an additional 48 bursts which triggered Swift and were detected by WAM, but did not trigger. A BAT-WAM team has cross-calibrated the two instruments using GRBs, and we are now able to perform joint fits on these bursts to determine their spectral parameters. For those bursts with spectroscopic redshifts, we can also calculate the isotropic energy. Here we present the results of joint Swift/BAT-Suzaku/WAM spectral fits for 91 of the bursts detected by the two instruments. We show that the distribution of spectral fit parameters is consistent with distributions from earlier missions and confirm that Swift bursts are consistent with earlier reported relationships between Epeak and isotropic energy. We show through time-resolved spectroscopy that individual burst pulses are also consistent with this relationship.Comment: Accepted for publication in the Astrophysical Journa
    corecore