273 research outputs found

    S3^3FD: Single Shot Scale-invariant Face Detector

    Full text link
    This paper presents a real-time face detector, named Single Shot Scale-invariant Face Detector (S3^3FD), which performs superiorly on various scales of faces with a single deep neural network, especially for small faces. Specifically, we try to solve the common problem that anchor-based detectors deteriorate dramatically as the objects become smaller. We make contributions in the following three aspects: 1) proposing a scale-equitable face detection framework to handle different scales of faces well. We tile anchors on a wide range of layers to ensure that all scales of faces have enough features for detection. Besides, we design anchor scales based on the effective receptive field and a proposed equal proportion interval principle; 2) improving the recall rate of small faces by a scale compensation anchor matching strategy; 3) reducing the false positive rate of small faces via a max-out background label. As a consequence, our method achieves state-of-the-art detection performance on all the common face detection benchmarks, including the AFW, PASCAL face, FDDB and WIDER FACE datasets, and can run at 36 FPS on a Nvidia Titan X (Pascal) for VGA-resolution images.Comment: Accepted by ICCV 2017 + its supplementary materials; Updated the latest results on WIDER FAC

    Highly parallelizable electronic transport calculations in periodic Rhodium and Copper nanostructures

    Full text link
    We extend the highly-parallelizable open-source electronic transport code TRANSEC to perform real-space atomic-scale electronic transport calculations with periodic boundary conditions in the lateral dimensions. We demonstrate the use of TRANSEC in periodic Cu and Rh bulk structures and in large periodic Rh point contacts, in preparation to perform calculations of reflection probability across Rh grain boundaries

    AT2018dyk Revisited: a Tidal Disruption Event Candidate with Prominent Infrared Echo and Delayed X-ray Emission in a LINER Galaxy

    Full text link
    The multiwavelength data of nuclear transient AT2018dyk, initially discovered as a changing-look low-ionization nuclear emission-line region (LINER) galaxy, has been revisited by us and found being in agreement with a tidal disruption event (TDE) scenario. The optical light curve of AT2018dyk declines as a power-law form approximately with index -5/3 yet its X-ray emission lags behind the optical peak by ∼140\sim140 days, both of which are typical characteristics for TDEs. The X-ray spectra are softer than normal active galactic nuclei (AGNs) although they show a slight trend of hardening. Interestingly, its rising time scale belongs to the longest among TDEs while it is nicely consistent with the theoretical prediction from its relatively large supermassive black hole (SMBH) mass (∼107.38M⊙\sim10^{7.38} M_{\odot}). Moreover, a prominent infrared echo with peak luminosity ∼7.4×1042 erg s−1\sim7.4\times10^{42}~\text{erg}~\text{s}^{-1} has been also detected in AT2018dyk, implying an unusually dusty subparsec nuclear environment in contrast with other TDEs. In our sample, LINERs share similar covering factors with AGNs, which indicates the existence of the dusty torus in these objects. Our work suggests that the nature of nuclear transients in LINERs needs to be carefully identified and their infrared echoes offer us a unique opportunity for exploring the environment of SMBHs at low accretion rate, which has been so far poorly explored but is crucial for understanding the SMBH activity.Comment: 9 pages, 6figures, 1 table. Accepted for publication in MNRA

    Hydraulic Fracturing Mechanism in Reservoirs with a Linear Inclusion Fissure

    Get PDF
    Hydraulic fracturing technology is widely used in most oil-water wells to improve production. However, the mechanism of fracturing in a reservoir with inclusion fissures is still unclear. In this study, a theoretical model was developed to determine the stress distribution during hydraulic fracturing. The line inclusion fissure was regarded as a thin bar and the stress around the artificial fracture, which is affected by a single line inclusion, was determined using the Eshelby equivalent inclusion theory. Stress intensity factors at the tip of both the artificial fracture and the inclusion were achieved, and initiation of the fracture was predicted. Furthermore, to validate the theoretical model, re-fracturing experiments were performed on a large-scale tri-axial system. The results showed that the defects reduce the intensity of the rock, which introduces the possibility that more complex fractures emerge in the reservoir. The results also showed that the fracture direction is governed by far-field stress. The obtained conclusions are helpful to better understand the mechanism of hydraulic fracturing in reservoirs
    • …
    corecore