40 research outputs found

    A double-layer Huygens’ metasurface with complete phase coverage and its dual-polarized meta-lens antenna application

    Get PDF
    A novel double-layer Huygens’ unit with dual-polarized response and complete phase coverage has been proposed for highly efficient meta-lens antenna application. The designed unit is a symmetric structure in which the double-layer metallic patterns not only act as the electric dipoles but also induce the magnetic dipoles. The balance between the initial electric dipole and the induced magnetic dipole makes the impedance of the metasurface match with that of free space, thus allowing efficient transmission of electromagnetic waves. Moreover, full transmission phase shift and near-unit transmission amplitude can be achieved simultaneously by change the structural parameters of the unit. Utilizing such electromagnetic properties, a dual-polarized meta-lens consisting of 35 × 35 units with size of 161 × 161 mm2 is designed, fabricated and measured. The results exhibit its good radiation performance. The maximum gain at a frequency of 28 GHz reaches 30.8 dBi, with an aperture efficiency of 42.3%. The 3-dB gain bandwidth reaches 12.5%, covering the frequency range of 26.7–30.2 GHz. The simple structure of the designed dual-polarized metasurface, high gain and high antenna efficiency make it an important antenna engineering role

    Periodontal health: A national cross‐sectional study of knowledge, attitudes and practices for the public oral health strategy in China

    Get PDF
    Aim To assess the status of periodontal health knowledge, attitudes and practices (KAP) among Chinese adults. Materials and Methods A cross‐sectional study was conducted in a nationally representative sample of adults (N = 50,991) aged 20 years or older from ten provinces, autonomous regions, and municipalities. Percentages of Chinese adults with correct periodontal knowledge, positive periodontal attitudes, and practices were estimated. Multiple logistic regression analyses were used to examine the related factors. Results Less than 20% of Chinese adults were knowledgeable about periodontal disease. Very few (2.6%) of Chinese adults use dental floss ≄once a day and undergo scaling ≄once a year and visit a dentist (6.4%) in the case of gingival bleeding. Periodontal health KAP was associated with gender, age, body mass index, marital status, place of residence, education level, income, smoking status, and history of periodontal disease. Conclusions Periodontal health KAP are generally poor among the Chinese adult population. Community‐based health strategies to improve periodontal health KAP need to be implemented. Increasing knowledge of periodontal disease, the cultivation of correct practices in response to gingival bleeding, and the development of good habits concerning the use of dental floss and regular scaling should be public oral health priorities

    Prediction and Optimal Scheduling of Advertisements in Linear Television

    Get PDF
    Advertising is a crucial component of marketing and an important way for companies to raise awareness of goods and services in the marketplace. Advertising campaigns are designed to convey a marketing image or message to an audience of potential consumers and television commercials can be an effective way of transmitting these messages to a large audience. In order to meet the requirements for a typical advertising order, television content providers must provide advertisers with a predetermined number of impressions in the target demographic. However, because the number of impressions for a given program is not known a priori and because there are a limited number of time slots available for commercials, scheduling advertisements efficiently can be a challenging computational problem. In this case study, we compare a variety of methods for estimating future viewership patterns in a target demographic from past data. We also present a method for using those predictions to generate an optimal advertising schedule that satisfies campaign requirements while maximizing advertising revenue

    Prediction and Optimal Scheduling of Advertisements in Linear Television

    Get PDF
    Advertising is a crucial component of marketing and an important way for companies to raise awareness of goods and services in the marketplace. Advertising campaigns are designed to convey a marketing image or message to an audience of potential consumers and television commercials can be an effective way of transmitting these messages to a large audience. In order to meet the requirements for a typical advertising order, television content providers must provide advertisers with a predetermined number of impressions in the target demographic. However, because the number of impressions for a given program is not known a priori and because there are a limited number of time slots available for commercials, scheduling advertisements efficiently can be a challenging computational problem. In this case study, we compare a variety of methods for estimating future viewership patterns in a target demographic from past data. We also present a method for using those predictions to generate an optimal advertising schedule that satisfies campaign requirements while maximizing advertising revenue

    Limb development genes underlie variation in human fingerprint patterns

    Get PDF
    Fingerprints are of long-standing practical and cultural interest, but little is known about the mechanisms that underlie their variation. Using genome-wide scans in Han Chinese cohorts, we identified 18 loci associated with fingerprint type across the digits, including a genetic basis for the long-recognized “pattern-block” correlations among the middle three digits. In particular, we identified a variant near EVI1 that alters regulatory activity and established a role for EVI1 in dermatoglyph patterning in mice. Dynamic EVI1 expression during human development supports its role in shaping the limbs and digits, rather than influencing skin patterning directly. Trans-ethnic meta-analysis identified 43 fingerprint-associated loci, with nearby genes being strongly enriched for general limb development pathways. We also found that fingerprint patterns were genetically correlated with hand proportions. Taken together, these findings support the key role of limb development genes in influencing the outcome of fingerprint patterning

    Highway Crack Detection and Classification Using UAV Remote Sensing Images Based on CrackNet and CrackClassification

    No full text
    Cracks are a common type of road distress. However, the traditional manual and vehicle-borne methods of detecting road cracks are inefficient, with a high rate of missed inspections. The development of unmanned aerial vehicles (UAVs) and deep learning has led to their use in crack detection and classification becoming an increasingly popular topic. In this paper, an aerial drone is used to efficiently and safely collect road data. However, this also brings many challenges. For example, flying too high or too fast may produce poor quality images, with unclear cracks that may be ignored or misjudged as other features and increased environmental noise that may make it difficult to distinguish between cracks and other noise features. To address the above challenges, this paper proposes the CrackNet model and CrackClassification algorithm. The CrackNet network is an encoder–decoder architecture. Low- and high-level semantic information are combined through the skip feature fusion layers between the encoder and decoder to enhance the model’s expression and ability to recover image details. Additionally, the MHDC module at the bottom of the network can significantly increase the receptive field without reducing the feature map resolution. The MHSA module can simultaneously capture features from multiple subspaces. The average precision (AP) scores of the CrackNet network on three datasets, namely UAVRoadCrack, CRKWH100, and CrackLS315, were 0.665, 0.942, and 0.895, respectively. In addition, values of the other two evaluation metrics, ODS and OIS, were the highest among the compared methods. Meanwhile, the proposed CrackClassification algorithm in this paper achieves 85% classification accuracy for transverse and longitudinal cracks and 78% classification accuracy for block cracks and reticulated cracks. Overall, the CrackNet algorithm provides a new baseline model for crack detection in UAV remote sensing image scenes. The CrackClassification algorithm provides a new approach for batch classification of highway cracks. The detection and classification algorithm proposed in this paper were applied to 108 km of road sections

    ADEPT: Autoencoder with differentially expressed genes and imputation for robust spatial transcriptomics clustering

    No full text
    Summary: Advancements in spatial transcriptomics (ST) have enabled an in-depth understanding of complex tissues by quantifying gene expression at spatially localized spots. Several notable clustering methods have been introduced to utilize both spatial and transcriptional information in the analysis of ST datasets. However, data quality across different ST sequencing techniques and types of datasets influence the performance of different methods and benchmarks. To harness spatial context and transcriptional profile in ST data, we developed a graph-based, multi-stage framework for robust clustering, called ADEPT. To control and stabilize data quality, ADEPT relies on a graph autoencoder backbone and performs an iterative clustering on imputed, differentially expressed genes-based matrices to minimize the variance of clustering results. ADEPT outperformed other popular methods on ST data generated by different platforms across analyses such as spatial domain identification, visualization, spatial trajectory inference, and data denoising

    PGC7 Regulates Genome-Wide DNA Methylation by Regulating ERK-Mediated Subcellular Localization of DNMT1

    No full text
    DNA methylation is an epigenetic modification that plays a vital role in a variety of biological processes, including the regulation of gene expression, cell differentiation, early embryonic development, genomic imprinting, and X chromosome inactivation. PGC7 is a maternal factor that maintains DNA methylation during early embryonic development. One mechanism of action has been identified by analyzing the interactions between PGC7 and UHRF1, H3K9 me2, or TET2/TET3, which reveals how PGC7 regulates DNA methylation in oocytes or fertilized embryos. However, the mechanism by which PGC7 regulates the post-translational modification of methylation-related enzymes remains to be elucidated. This study focused on F9 cells (embryonic cancer cells), which display high levels of PGC7 expression. We found that both knockdown of Pgc7 and inhibition of ERK activity resulted in increased genome-wide DNA methylation levels. Mechanistic experiments confirmed that inhibition of ERK activity led to the accumulation of DNMT1 in the nucleus, ERK phosphorylated DNMT1 at ser717, and DNMT1 Ser717-Ala mutation promoted the nuclear localization of DNMT1. Moreover, knockdown of Pgc7 also caused downregulation of ERK phosphorylation and promoted the accumulation of DNMT1 in the nucleus. In conclusion, we reveal a new mechanism by which PGC7 regulates genome-wide DNA methylation via phosphorylation of DNMT1 at ser717 by ERK. These findings may provide new insights into treatments for DNA methylation-related diseases

    DNA polymerase Δ harmonizes topological states and R-loops formation to maintain genome integrity in Arabidopsis

    No full text
    Abstract Genome topology is tied to R-loop formation and genome stability. However, the regulatory mechanism remains to be elucidated. By establishing a system to sense the connections between R-loops and genome topology states, we show that inhibiting DNA topoisomerase 1 (TOP1i) triggers the global increase of R-loops (called topoR-loops) and DNA damages, which are exacerbated in the DNA damage repair-compromised mutant atm. A suppressor screen identifies a mutation in POL2A, the catalytic subunit of DNA polymerase Δ, rescuing the TOP1i-induced topoR-loop accumulation and genome instability in atm. Importantly we find that a highly conserved junction domain between the exonuclease and polymerase domains in POL2A is required for modulating topoR-loops near DNA replication origins and facilitating faithful DNA replication. Our results suggest that DNA replication acts in concert with genome topological states to fine-tune R-loops and thereby maintain genome integrity, revealing a likely conserved regulatory mechanism of TOP1i resistance in chemotherapy for ATM-deficient cancers
    corecore