73 research outputs found

    Evolution driven by a varying host environment selects for distinct HIV-1 entry phenotypes and other informative variants

    Get PDF
    HIV-1 generates remarkable intra- and inter-host viral diversity during infection. In the response to the dynamic selective pressures of the host’s environment, HIV-1 evolves distinct phenotypes—biological features that provide fitness advantages. The transmitted form of HIV-1 has been shown to require a high density of CD4 on the target cell surface (as found on CD4+ T cells) and typically uses C–C chemokine receptor type 5 (CCR5) as a coreceptor during entry. This phenotype is referred to as R5T cell-tropic (or R5 T-tropic); however, HIV-1 can switch to a secondary coreceptor, C–X–C chemokine receptor type 4 (CXCR4), resulting in a X4T cell-tropic phenotype. Macrophage-tropic (or M-tropic) HIV-1 can evolve to efficiently enter cells expressing low densities of CD4 on their surface (such as macrophages/microglia). So far only CCR5-using M-tropic viruses have been found. M-tropic HIV-1 is most frequently found within the central nervous system (CNS), and infection of the CNS has been associated with neurologic impairment. It has been shown that interferon-resistant phenotypes have a selective advantage during transmission, but the underlying mechanism of this is still unclear. During untreated infection, HIV-1 evolves under selective pressure from both the humoral/antibody response and CD8+ T-cell killing. Sufficiently potent antiviral therapy can suppress viral replication, but if the antiviral drugs are not powerful enough to stop replication, then the replicating virus will evolve drug resistance. HIV-1 phenotypes are highly relevant to treatment efforts, clinical outcomes, vaccine studies, and cure strategies. Therefore, it is critical to understand the dynamics of the host environment that drive these phenotypes and how they affect HIV-1 pathogenesis. This review will provide a comprehensive discussion of HIV-1 entry and transmission, and drug-resistant phenotypes. Finally, we will assess the methods used in previous and current research to characterize these phenotypes

    Characterizing HIV-1 Splicing by Using Next-Generation Sequencing

    Get PDF
    ABSTRACT Full-length human immunodeficiency virus type 1 (HIV-1) RNA serves as the genome or as an mRNA, or this RNA undergoes splicing using four donors and 10 acceptors to create over 50 physiologically relevant transcripts in two size classes (1.8 kb and 4 kb). We developed an assay using Primer ID-tagged deep sequencing to quantify HIV-1 splicing. Using the lab strain NL4-3, we found that A5 ( env / nef ) is the most commonly used acceptor (about 50%) and A3 ( tat ) the least used (about 3%). Two small exons are made when a splice to acceptor A1 or A2 is followed by activation of donor D2 or D3, and the high-level use of D2 and D3 dramatically reduces the amount of vif and vpr transcripts. We observed distinct patterns of temperature sensitivity of splicing to acceptors A1 and A2. In addition, disruption of a conserved structure proximal to A1 caused a 10-fold reduction in all transcripts that utilized A1. Analysis of a panel of subtype B transmitted/founder viruses showed that splicing patterns are conserved, but with surprising variability of usage. A subtype C isolate was similar, while a simian immunodeficiency virus (SIV) isolate showed significant differences. We also observed transsplicing from a downstream donor on one transcript to an upstream acceptor on a different transcript, which we detected in 0.3% of 1.8-kb RNA reads. There were several examples of splicing suppression when the env intron was retained in the 4-kb size class. These results demonstrate the utility of this assay and identify new examples of HIV-1 splicing regulation. IMPORTANCE During HIV-1 replication, over 50 conserved spliced RNA variants are generated. The splicing assay described here uses new developments in deep-sequencing technology combined with Primer ID-tagged cDNA primers to efficiently quantify HIV-1 splicing at a depth that allows even low-frequency splice variants to be monitored. We have used this assay to examine several features of HIV-1 splicing and to identify new examples of different mechanisms of regulation of these splicing patterns. This splicing assay can be used to explore in detail how HIV-1 splicing is regulated and, with moderate throughput, could be used to screen for structural elements, small molecules, and host factors that alter these relatively conserved splicing patterns

    Evolution driven by a varying host environment selects for distinct HIV-1 entry phenotypes and other informative variants

    Get PDF
    HIV-1 generates remarkable intra- and inter-host viral diversity during infection. In the response to the dynamic selective pressures of the host’s environment, HIV-1 evolves distinct phenotypes—biological features that provide fitness advantages. The transmitted form of HIV-1 has been shown to require a high density of CD4 on the target cell surface (as found on CD4+ T cells) and typically uses C–C chemokine receptor type 5 (CCR5) as a coreceptor during entry. This phenotype is referred to as R5T cell-tropic (or R5 T-tropic); however, HIV-1 can switch to a secondary coreceptor, C–X–C chemokine receptor type 4 (CXCR4), resulting in a X4T cell-tropic phenotype. Macrophage-tropic (or M-tropic) HIV-1 can evolve to efficiently enter cells expressing low densities of CD4 on their surface (such as macrophages/microglia). So far only CCR5-using M-tropic viruses have been found. M-tropic HIV-1 is most frequently found within the central nervous system (CNS), and infection of the CNS has been associated with neurologic impairment. It has been shown that interferon-resistant phenotypes have a selective advantage during transmission, but the underlying mechanism of this is still unclear. During untreated infection, HIV-1 evolves under selective pressure from both the humoral/antibody response and CD8+ T-cell killing. Sufficiently potent antiviral therapy can suppress viral replication, but if the antiviral drugs are not powerful enough to stop replication, then the replicating virus will evolve drug resistance. HIV-1 phenotypes are highly relevant to treatment efforts, clinical outcomes, vaccine studies, and cure strategies. Therefore, it is critical to understand the dynamics of the host environment that drive these phenotypes and how they affect HIV-1 pathogenesis. This review will provide a comprehensive discussion of HIV-1 entry and transmission, and drug-resistant phenotypes. Finally, we will assess the methods used in previous and current research to characterize these phenotypes

    Cytosine deamination and the precipitous decline of spontaneous mutation during Earth's history

    Get PDF
    Cytosine deamination appears to be largely responsible for spontaneous mutations in the modern world. Because of its sensitivity to temperature (Q10 = 4), that reaction would have furnished a mechanism for rapid evolution on a warm earth. As the temperature fell from 100° to 25 °C, the rate of cytosine-based mutation would have fallen by a factor of more than 4,000, with a corresponding increase in the stability of genetic information. Other potentially mutagenic events are known to be even more sensitive to temperature, and would presumably have led to an even steeper decline in the rate of spontaneous mutation as the earth cooled

    Recent key advances in human immunodeficiency virus medicine and implications for China

    Get PDF
    In this article we summarize several recent major developments in human immunodeficiency virus treatment, prevention, outcome, and social policy change. Updated international guidelines endorse more aggressive treatment strategies and safer antiretroviral drugs. New antiretroviral options are being tested. Important lessons were learned in the areas of human immunodeficiency virus vaccines and microbicide gels from clinical studies, and additional trials in prevention, especially pre-exposure prophylaxis, are nearing completion. Insight into the role of the virus in the pathogenesis of diseases traditionally thought to be unrelated to acquired immunodeficiency syndrome has become a driving force for earlier and universal therapy. Lastly, we review important achievements of and future challenges facing China as she steps into her eighth year of the National Free Antiretroviral Treatment Program

    Deep Sequencing of the HIV-1 env Gene Reveals Discrete X4 Lineages and Linkage Disequilibrium between X4 and R5 Viruses in the V1/V2 and V3 Variable Regions

    Get PDF
    ABSTRACT HIV-1 requires the CD4 receptor and a coreceptor (CCR5 [R5 phenotype] or CXCR4 [X4 phenotype]) to enter cells. Coreceptor tropism can be assessed by either phenotypic or genotypic analysis, the latter using bioinformatics algorithms to predict tropism based on the env V3 sequence. We used the Primer ID sequencing strategy with the MiSeq sequencing platform to reveal the structure of viral populations in the V1/V2 and C2/V3 regions of the HIV-1 env gene in 30 late-stage and 6 early-stage subjects. We also used endpoint dilution PCR followed by cloning of env genes to create pseudotyped virus to explore the link between genotypic predictions and phenotypic assessment of coreceptor usage. We found out that the most stringently sequence-based calls of X4 variants (Geno2Pheno false-positive rate [FPR] of ≤2%) formed distinct lineages within the viral population, and these were detected in 24 of 30 late-stage samples (80%), which was significantly higher than what has been seen previously by using other approaches. Non-X4 lineages were not skewed toward lower FPR scores in X4-containing populations. Phenotypic assays showed that variants with an intermediate FPR (2 to 20%) could be either X4/dual-tropic or R5 variants, although the X4 variants made up only about 25% of the lineages with an FPR of <10%, and these variants carried a distinctive sequence change. Phylogenetic analysis of both the V1/V2 and C2/V3 regions showed evidence of recombination within but very little recombination between the X4 and R5 lineages, suggesting that these populations are genetically isolated. IMPORTANCE Primer ID sequencing provides a novel approach to study genetic structures of viral populations. X4 variants may be more prevalent than previously reported when assessed by using next-generation sequencing (NGS) and with a greater depth of sampling than single-genome amplification (SGA). Phylogenetic analysis to identify lineages of sequences with intermediate FPR values may provide additional information for accurately predicting X4 variants by using V3 sequences. Limited recombination occurs between X4 and R5 lineages, suggesting that X4 and R5 variants are genetically isolated and may be replicating in different cell types or that X4/R5 recombinants have reduced fitness

    Primer ID Validates Template Sampling Depth and Greatly Reduces the Error Rate of Next-Generation Sequencing of HIV-1 Genomic RNA Populations

    Get PDF
    ABSTRACT Validating the sampling depth and reducing sequencing errors are critical for studies of viral populations using next-generation sequencing (NGS). We previously described the use of Primer ID to tag each viral RNA template with a block of degenerate nucleotides in the cDNA primer. We now show that low-abundance Primer IDs (offspring Primer IDs) are generated due to PCR/sequencing errors. These artifactual Primer IDs can be removed using a cutoff model for the number of reads required to make a template consensus sequence. We have modeled the fraction of sequences lost due to Primer ID resampling. For a typical sequencing run, less than 10% of the raw reads are lost to offspring Primer ID filtering and resampling. The remaining raw reads are used to correct for PCR resampling and sequencing errors. We also demonstrate that Primer ID reveals bias intrinsic to PCR, especially at low template input or utilization. cDNA synthesis and PCR convert ca. 20% of RNA templates into recoverable sequences, and 30-fold sequence coverage recovers most of these template sequences. We have directly measured the residual error rate to be around 1 in 10,000 nucleotides. We use this error rate and the Poisson distribution to define the cutoff to identify preexisting drug resistance mutations at low abundance in an HIV-infected subject. Collectively, these studies show that >90% of the raw sequence reads can be used to validate template sampling depth and to dramatically reduce the error rate in assessing a genetically diverse viral population using NGS. IMPORTANCE Although next-generation sequencing (NGS) has revolutionized sequencing strategies, it suffers from serious limitations in defining sequence heterogeneity in a genetically diverse population, such as HIV-1 due to PCR resampling and PCR/sequencing errors. The Primer ID approach reveals the true sampling depth and greatly reduces errors. Knowing the sampling depth allows the construction of a model of how to maximize the recovery of sequences from input templates and to reduce resampling of the Primer ID so that appropriate multiplexing can be included in the experimental design. With the defined sampling depth and measured error rate, we are able to assign cutoffs for the accurate detection of minority variants in viral populations. This approach allows the power of NGS to be realized without having to guess about sampling depth or to ignore the problem of PCR resampling, while also being able to correct most of the errors in the data set

    Recent key advances in human immunodeficiency virus medicine and implications for China

    Get PDF
    Abstract In this article we summarize several recent major developments in human immunodeficiency virus treatment, prevention, outcome, and social policy change. Updated international guidelines endorse more aggressive treatment strategies and safer antiretroviral drugs. New antiretroviral options are being tested. Important lessons were learned in the areas of human immunodeficiency virus vaccines and microbicide gels from clinical studies, and additional trials in prevention, especially pre-exposure prophylaxis, are nearing completion. Insight into the role of the virus in the pathogenesis of diseases traditionally thought to be unrelated to acquired immunodeficiency syndrome has become a driving force for earlier and universal therapy. Lastly, we review important achievements of and future challenges facing China as she steps into her eighth year of the National Free Antiretroviral Treatment Program

    Diversity and Tropism of HIV-1 Rebound Virus Populations in Plasma Level After Treatment Discontinuation

    Get PDF
    Human immunodeficiency virus–infected people discontinuing therapy experience a rebound in the virus level (hereafter, “rebound virus”) from a persistent reservoir. We examined 10 samples from patients in AIDS Clinical Trials Group study A5068 with rebound virus, using single-genome amplification and Primer ID deep sequencing, to assess env genetic diversity of the virus population. Most rebound-virus populations showed significant diversity. All env examined required high levels of CD4 for entry, consistent with selection of replication in CD4+ T cells. These results indicate that most people discontinuing therapy release a diverse population of virus and that this released virus has entry features of virus selected for replication in CD4+ T cells, rather than in myeloid cells

    Quantification of the Latent HIV-1 Reservoir Using Ultra Deep Sequencing and Primer ID in a Viral Outgrowth Assay

    Get PDF
    In this study, we measured the latent HIV-1 reservoir harboring replication-competent HIV-1 in resting CD4+ T cells in participants on highly active antiretroviral therapy (HAART), quantitating the frequency of latent infection through the use of a Primer ID-based Ultra Deep Sequencing Assay (UDSA), in comparison to the readout of the quantitative viral outgrowth assay (QVOA)
    • …
    corecore