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Abstract

Background—In this study, we measured the latent HIV-1 reservoir harboring replication-

competent HIV-1 in resting CD4+ T cells in participants on highly active antiretroviral therapy 

(HAART), quantitating the frequency of latent infection through the use of a Primer ID-based 

Ultra Deep Sequencing Assay (UDSA), in comparison to the readout of the quantitative viral 

outgrowth assay (QVOA).

Methods—Viral RNA derived from culture wells of QVOA that scored as HIV-1 p24 capsid 

(CA) antigen-positive were tagged with a specific barcode during cDNA synthesis, and the 

sequences within the V1–V3 region of the HIV-1 env gene were analyzed for diversity using the 

Primer ID-based paired-end MiSeq platform. We analyzed samples from a total of 19 participants, 

2 initially treated with HAART in acute infection and 17 treated during chronic infection. 

Phylogenetic trees were generated with all viral lineages detected from culture wells derived from 

each participant to determine the number of distinct viral lineages (DVLs) growing out in each 

well, thus capturing another level of information beyond the well being positive for viral antigen. 

The infectious units per million cells (IUPM) values estimated using a maximum likelihood 

approach, based on the number of DVLs detected (VOA-UDSA), were compared with those 

obtained from QVOA measured using limiting dilution.

Results—IUPM estimates determined by VOA-UDSA ranged from 0.14 to 3.66 and strongly 

correlated with the IUPM estimates determined by QVOA (r=0.94; p<0.0001).

Conclusions—VOA-UDSA may be an alternative readout for that currently used for QVOA.
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INTRODUCTION

Eradication of HIV-1 from infected individuals on suppressive therapy has been hampered 

due to HIV-1 persistence in viral reservoirs. Among potential cellular reservoirs contributing 

to HIV-1 persistence,1–3 latent infection of resting memory CD4+ T cells is well 

demonstrated.4–8 Assays have been developed to quantify resting CD4+ T cells that harbor 

replication-competent HIV-1 in people on HAART. The current most widely recognized 

culture assay, the quantitative viral outgrowth assay (QVOA), measures infectious units per 

million (IUPM) resting CD4+ T cell. Although QVOA is the current gold standard for 

measuring the latent HIV-1 reservoir, the assay has limited throughput capacity due to the 

need for large numbers of cells and the need to wait for the outgrowth of virus from single 

cells to assess the titer by limiting dilution.9 Using QVOA it has been possible to show that a 

small fraction of the resting CD4+ T cells harbor replication-competent HIV-1 

(approximately 0.1 to 10 per million cells).4,10,11 However, Ho et al. in a recent study, 

demonstrated that this number is likely an underestimate as some cells that encode an HIV-1 

provirus and can be induced to express HIV-1 RNA do not produce a replication-competent 

virus that can be recovered following a single activation event during the QVOA.12 A 

modified version of QVOA has recently been developed. In this modified assay, a CD4+/

CCR5+ cell line (MOLT-4/CCR5) replaces primary cells to support virus outgrowth, and an 

HIV-specific RT-PCR assay replaces p24 ELISA for virus detection in the supernatant, 

which allows earlier detection of virus outgrowth.13 These modifications shorten the time 

required to complete the QVOA, however, the modified assay still requires large amounts of 

blood from a patient to allow limiting dilution of resting CD4+ T cells to measure an IUPM 

value.

PCR-based assays detecting HIV-1 DNA are the most sensitive assays for detecting viral 

sequences in a cell population, but these assays greatly overestimate the number of 

infectious proviruses as they detect all forms of HIV-1 DNA, including replication-

incompetent proviruses and unintegrated viral genomes that dominate the proviral pool.14–17 

Compared to the frequency of resting CD4+ T cells harboring inducible, replication-

competent HIV-1, an approximately ~300-fold excess amount of mostly defective HIV-1 

proviral DNA has been detected by PCR-based assays.18,19 Assays detecting cell-associated 

HIV-1 RNA after the induction of viruses in resting CD4+ T cells have increased sensitivity, 

however, these assays also overestimate the number of inducible, infectious proviruses 

because not all transcribed viral RNAs give rise to replication competent virus.20,21 

Recently, a new RNA assay termed TILDA (tat/rev Induced Limiting Dilution Assay) was 

proposed to measure the frequency of latently infected resting CD4+ T cells by quantifying 

tat/rev multiply-spliced (ms) HIV-1 RNA upon induction.22 The median frequency of 

latently infected CD4+ T cells estimated by TILDA was 48 times more than the frequency 

measured by QVOA.22 The assay requires significantly fewer cells from a patient and takes 
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less time than does QVOA, however, it is likely that the latent HIV-1 reservoir estimated by 

TILDA is also an overestimate as not all cells expressing tat/rev ms RNA are likely to 

produce replication-competent viruses.

Recent efforts directed at ultimately curing an HIV-1 infection have led to the identification 

of latency reversing agents such as histone deacetylase (HDAC) inhibitors that reverse 

HIV-1 latency by inducing HIV-1 transcription.23–26 These drugs are currently being tested 

in clinical trials, now in combination with immunotherapies to speed the clearance of 

infected cells. To assess the effectiveness of these drugs, it is necessary to have established 

assays that can precisely record changes in the frequency of latent infection. It has been 

difficult to demonstrate that other assays directed at assessing the size of the latent reservoir 

are accurate surrogates for QVOA measurements.19

The viral population found in resting CD4+ T cells of viremic patients can be very diverse.9 

In an attempt to develop an alternative readout for the QVOA, we quantified the frequency 

of latent HIV-1 infection by employing a Primer ID-based Ultra Deep Sequencing Assay of 

the outgrowth virus (VOA-UDSA). VOA-UDSA uses the differences in viral sequence to 

identify the number of distinct viruses induced to replicate in a culture supernatant, thereby 

yielding an estimate of the frequency of latently HIV-infected resting CD4+ T cells in the 

culture, given the assumption that most latently infected cells are infected by a single viral 

genome. Thus, VOA-UDSA could eliminate the limiting dilution culture protocol that is 

typically required for estimating a titer of latently infected cells using QVOA. In our current 

study, the IUPM values determined by VOA-UDSA from p24+ wells were strongly 

correlated with the IUPM values determined by QVOA (r=0.94; p<0.0001), suggesting that 

this approach can provide an alternative readout for the QVOA.

METHODS

Participants, QVOA, and Viral Samples

All participants were on suppressive antiretroviral therapy (ART) with plasma HIV-1 RNA 

levels of <50 copies/ml for a minimum of 6 months prior to enrollment. Studies were 

approved by the University of North Carolina at Chapel Hill Biomedical Review Board. 

Informed consent was obtained from all participants prior to study enrollment. Lymphocytes 

were obtained by continuous-flow leukapheresis, and resting CD4+ T cells were isolated by 

negative selection as previously described.27 QVOA to recover replication competent HIV-1 

from resting CD4+ T cells was performed as reported elsewhere.28–30 This included 

inducing expression of the latent virus and co-culture with allogeneic CD4+ T cells. 

Supernatants from the co-cultures were harvested at day 15 and at day 19 to test for p24 

using an ELISA, with excess supernatant medium frozen. The titer of resting CD4+ T cells 

that could be induced to produce infectious virus was reported as infectious units per million 

cells (IUPM) and was estimated via maximum likelihood as previously described; this 

approach requires that multiple wells at various dilutions of cells be tested until wells 

negative for viral outgrowth are obtained, i.e. limiting dilution.28–30 The 95% confidence 

intervals for the IUPM estimates were calculated by using the program IUPMStats v1.0 

Infection Frequency calculator.31
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MiSeq Library Preparation and Sequencing

The 300 base paired-end multiplex Illumina MiSeq library preparation and sequencing was 

performed as previously described.32 Briefly, viral RNA was extracted from the culture 

supernatants derived from VOA using a QIAamp viral RNA kit (Qiagen) and quantified by 

quantitative real-time RT-PCR using a TaqMan one-step RT-PCR master mix reagent kit 

(Applied Biosystems). The sequences of the primers and probe to detect the HIV-1 gag 
region were previously described.33 The cDNA reaction was carried out with approximately 

10,000 copies of HIV-1 RNA and a Primer-ID cDNA primer composed of an HIV-1 gene-

specific sequence for priming at the 3’ end, a four nucleotide spacer, an eight or ten 

nucleotide randomized sequence (Primer ID), and a PCR priming site at the 5’ end (see 

Supplemental Digital Content 1). The HIV-1 gene-specific sequence for priming 

corresponds to the V3 region of the HIV-1 env gene (nt position from 7238 to 7209, HBX2 

numbering). The reverse primer used in the 2nd round PCR contained a specific Barcode to 

assign the culture supernatant, i.e. the well derived from the VOA. A maximum of 24 

indexed reverse primers were used to multiplex samples in a single deep sequencing run. 

The final PCR products corresponding to the HIV-1 env V1–V3 region were subjected to 

deep sequencing analysis.

For viral samples derived from participants C1, C2, C7, C8, and C12, the cDNA reaction 

was carried out using one of the four Primer ID cDNA primers containing a specific Barcode 

(see Supplemental Digital Content 1). After the cDNA reaction step, four cDNA reactions 

each with a different Barcode were pooled before cDNA purification to result in 96 libraries 

in a single deep sequencing run.

Distinct Viral Lineages (DVLs)

Primer IDs with multiple sequence reads detected in each well were used to create 

consensus sequences as previously described.32 Consensus sequences with an abundance 

higher than the arbitrary cut-off value, 2.5% (Fig. 1A and see Supplemental Digital Content 

2), were processed to detect viral lineages in each well and to determine DVLs by using an 

in-house pipeline (available at https://github.com/SwanstromLab/DVL). Viral lineages and 

DVLs were also manually determined using MUSCLE (v3.8.1)34,35 and neighbor-joining 

phylogenetic tree analysis (MEGA 5.10), respectively. The total number of DVLs divided by 

the total number of viral lineages was used to report % DVL detected for each participants.

IUPM Calculation For VOA-UDSA

The IUPM was estimated using maximum likelihood assuming the number of infected cells 

per well followed a Poisson distribution for each DVL. Assuming independence among 

wells and different lineages, the likelihood of the observed data is proportional to:

(Equation 1)

where M is the total number of wells used in the QVOA, xM is the total number of wells 

scored as p24 positive in the QVOA, m is the number of wells analyzed by VOA-UDSA, n is 
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the total number of DVLs detected, yi is the number of wells expressing ith DVL to correct 

the potential of two identical viral lineages present in the same well, and λi is the mean of 

the ith DVL. When all QVOA positive wells were analyzed using UDSA (m = xM), the 

maximum likelihood estimator (MLE) of λi equals . Otherwise (m < xM), the 

MLE was obtained numerically using the Equation 1. IUPM estimates were obtained by 

summing the MLEs of the DVL specific means and then multiplying by the appropriate 

scaling factor according to the number of cells per well used in the QVOA. Wald-type 

confidence intervals were computed using the observed information to estimate the standard 

error of the IUPM estimate.

Simulation of Recombination Errors

Two wells derived from participant C16 were selected to simulate method-introduced 

recombination errors. Each well contained only one viral lineage and there were 9 

nucleotide differences between the two viral lineages within the V1–V3 region of the HIV-1 

env sequences. The viral RNAs extracted from each well were mixed at a molar ratio of 1:1 

for the cDNA reaction that was then subjected to UDS to result in approximately 4000 

template consensus sequences, and this was repeated as four sets of duplicate cDNA 

reactions. Consensus sequences were generated without using the arbitrary cut-off value to 

maximize the detection of minor viral lineages. Highlighter plots were generated using all 

viral lineages to identify recombinants.

Statistical Analysis

To measure the correlation between the IUPMs obtained from the two assays, VOA-UDSA 

and QVOA, correlation analysis was performed to calculate the Spearman rank correlation 

coefficient (r) and the best-fitting straight line was formed using linear regression analysis. 

The Wilcoxon matched-pairs test was used to compare the mean ranks of the IUPM values 

obtained from the two assays, VOA-UDSA and QVOA. All statistical analyses were 

performed using GraphPad Prism software version 6 (San Diego, CA) and all exact p values 

are two-tailed.

RESULTS

VOA-UDSA Can Detect Multiple Viral Lineages In A Single VOA Well

The goal of this work was to develop an assay that eliminates the limiting dilution step of the 

QVOA. VOA-UDSA uses viral diversity and Primer ID-based UDS to quantify the number 

of resting CD4+ T cells harboring inducible, replication-competent HIV-1 in participants on 

HAART. VOA-UDSA uses differences in viral sequences to count the number of different 

viruses induced from cultured resting CD4+ T cells based on the assumption that individual 

cells carry distinct proviruses.

VOA-UDSA involves induction of proviruses in latently HIV-infected resting CD4+ T cells 

and deep sequencing analysis of viral samples of the culture supernatants to determine 

distinct viral lineages (DVLs) (see Supplemental Digital Content 3). We analyzed 146 

culture supernatants derived from QVOA, representing cells from 2 participants in acute 
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infection and 17 participants who were chronically infected. Individual viral RNA templates 

were tagged with a Primer ID, allowing the construction of a template consensus sequence 

for each RNA copied in the cDNA step. In addition, a separate barcode was added to the 

PCR products of each well to designate the well of origin. An amplicon representing the 

region from V1–V3 of the viral env gene was sequenced.

Figure 1A shows the distribution of the number of viral lineage as a function of abundance 

from all of the wells analyzed in this study. The number of observed lineages increases 

significantly as the abundance decreases below 2.5%. Since most of the wells analyzed in 

pools of 2.5 million resting CD4+ T cells should have only a few viral lineages, the use of 

UDS results in high levels of redundancy in the sequencing of these few lineages. As a result 

of this, sequencing errors are extensively represented in the data set. However, the 

sequencing errors are much less abundant than the true viral lineages, which we attribute to 

the significant increases seen in lineages of abundance below 2.5% (Fig. 1A). For this reason 

we count as viral lineages only those homogeneous viral populations that comprise at least 

2.5% of the population. Each consensus template sequence that passed the abundance cut-off 

and that differed by one or more nucleotides within the HIV-1 env V1–V3 region was 

defined as a viral lineage. Using this cut-off we would ignore a slow growing virus that 

failed to reach at least 2.5% of the viral population in a well of the QVOA that had multiple 

viruses induced to replicate.

Figures 1B, C, and D show examples of 2, 3, and 4 viral lineages, respectively, identified in 

single wells of QVOA from chronically infected participants. We were able to detect up to 8 

viral lineages in a well of the QVOA in this setting. In this study we analyzed wells 

containing either 2.5 or 0.5 million resting CD4+ T cells in the QVOA culture wells.

Largely Identical Viral Lineages Are Detected In QVOA In Participants Treated Since Acute 
Infection, Whereas The Majority Of Viral Lineages In QVOA In Participants Treated During 
Chronic Infection Are Distinct

Our assay is based on the assumption that the viral sequences derived from different 

proviruses are genetically distinct. However, it is possible that viral sequences in a 

participant display some degree of homogeneity. This would be the case if, for example, a 

cell with an inducible and replication-competent provirus were clonally expanded within the 

pool of latently infected cells. If two cells with identical inducible proviruses (at least as 

assessed using the V1–V3 sequence) are present in the same well, this would lead to an 

underestimate of IUPM values as the two cells would be recorded as producing a single viral 

lineage. To assess our assumption that each viral lineage would have a distinct sequence, all 

viral lineages detected in each patient were used to generate a neighbor-joining phylogenetic 

tree to determine distinct viral lineages (DVLs). Phylogenetic trees from a total of 19 

participants, 2 in acute infection and 17 chronically infected, were examined for the degree 

of heterogeneity of viral sequence lineages. When the samples were derived from 

participants in acute infection, all viral lineages observed in different wells were 

homogeneous (Fig. 2A). This indicates that the readout of DVLs is not a viable approach in 

assessing the size of the latent reservoir in participants prior to the time when their reservoir 

has developed sequence diversity.
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In contrast, the majority of viral lineages observed from chronically infected participants 

were distinct. A phylogenetic tree showing viral lineage sequences from participant C11 

reveals 9 DVLs among a total of 16 viral lineages detected in all wells, showing that 56% of 

the viral lineages detected among the wells analyzed represented distinct sequences (%DVL) 

(Fig. 2B and C). We observed that %DVL varied among chronically infected participants, 

ranging from 30% to 100%, with an average of 72% (Fig. 2C and Table 1). The lowest 

%DVL of 30% was seen in participant C8 who had the lowest CD4 and nadir CD4 counts 

among all patients (see Supplemental Digital Content 4). These results show that IUPM 

titers using VOA-UDSA requires a correction to account for the potential of two identical 

viral lineages being present in the same well.

VOA-UDSA Titer Strongly Correlates With QVOA Titer

We estimated IUPM using VOA-UDSA for 17 chronically infected participants whose 

IUPM values had previously been determined by QVOA. The information of QVOA wells 

used for VOA-UDSA is listed in Table 1. For this analysis it was essential to correct for the 

potential of having two identical viral lineages in the same well by documenting the 

frequency of identical lineages between wells; this allowed us to use the Poisson 

Distribution to estimate then number of wells that had two identical lineages, which cannot 

be recorded by analyzing sequence diversity. In Figure 2B, DVL1 and DVL7 were detected 

in 3 wells, DVL5 was detected in 4 wells among the total of 6 wells analyzed by VOA-

UDSA, and the remaining 6 DVLs were detected in a single well each. The sum of all 

individual DVL titers observed and inferred in each participant was adjusted for the initial 

number of resting CD4+ T cells seeded in the wells examined for viral outgrowth to express 

the IUPM estimates.

When the IUPM estimates obtained by VOA-UDSA were compared to those determined by 

QVOA, we observed a strong correlation between the two values (r=0.94, p<0.0001) (Fig. 

3A and B). The estimated IUPM observed from VOA-UDSA on average tended to be 

slightly higher than that measured by QVOA, 1.17 IUPM versus 0.91 IUPM (p=0.0052), 

respectively (Fig. 3C).

Frequency Of VOA-UDSA Introduced Recombination Events Is Low

UDSA involves a cDNA reaction and PCR amplifications that can introduce errors as the 

result of nucleotide mis-incorporation and recombination, altering the true diversity of a 

viral population.36–40 To investigate whether recombination introduced during the reverse 

transcription or PCR steps can contribute to the apparent diversity of a viral population, 

thereby potentially overestimating the size of the latent reservoir, we simulated 

recombination by mixing two different RNA samples, each containing a single viral lineage 

where each lineage was distinct from the other. Four sets of duplicate cDNA reactions were 

carried out with the two RNAs mixed at a molar ratio of 1:1 to result in about 4,000 template 

consensus sequences from each cDNA reaction. Figure 4 shows the analysis of deep 

sequencing from one of the four cDNA reactions. Among all of the 3,566 template 

consensus sequences recovered, we detected only 1 template consensus sequence that was a 

recombinant between the two input RNAs, representing only 0.03% of all template 

consensus sequences (Fig. 4). On average, only 0.08% of all template consensus sequences 
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were recombinants. This result indicates that the frequency of VOA-UDSA introduced 

recombination is very low and its contribution to the apparent diversity of a viral population 

is insignificant.

Recombination can also occur during the culture for viral outgrowth. To examine the 

frequency of recombination during the culture, we examined the total frequency of 

recombination by analyzing 68 wells containing at least 3 viral lineages by highlighter plot 

analysis. The result revealed that approximately 5% of all viral lineages analyzed were 

recombinants (data not shown). Considering the low frequency of VOA-UDSA introduced 

recombination, the majority of recombinants we detected were derived from the culture. 

These results suggest that the influence of recombination events during the culture or the 

assay on the size of HIV-1 latent reservoir is not substantial.

DISCUSSION

Assessing the effectiveness of strategies for HIV-1 eradication requires a robust assay 

applicable to clinical settings to measure changes in the size of the viral reservoir over the 

course of therapy. In this work we have explored an alternative readout to the current 

QVOA. The current forms of the QVOA rely on the limiting dilution of cells to detect 

individual cells that give rise to infectious virus with outgrowth detection by p24 or using 

real time PCR to detect viral RNA. Here we measured the number of resting CD4+ T cells 

harboring replication-competent HIV-1 by using a Primer ID-based Ultra Deep Sequencing 

Assay, VOA-UDSA, to count the number of distinct viruses that grow out in a culture. VOA-

UDSA still involves viral outgrowth in directly analyzing the number of different sequences 

of the induced viruses in the culture supernatant to score the frequency of latently HIV-

infected resting CD4+ T cells. However, it eliminates the need for the limiting dilution step 

and offers the possibility that a smaller number of outgrowth wells with multiple viruses 

could be analyzed to titer the number of virus-inducible cells. In addition, the use of viral 

RNA and PCR may allow assessment of viral outgrowth after a shorter period of time than 

needed to record p24 in the culture supernatant, at least with standard ELISA assays.

When we quantified IUPM estimates in 17 chronically infected participants by analyzing a 

total of 133 culture wells derived from QVOA scored as p24 positive, the IUPM estimates 

determined by VOA-UDSA were strongly correlated with the IUPM estimates determined 

by QVOA (r=0.94; p<0.0001). As such, VOA-UDSA is the first assay that strongly 

correlates with QVOA. With the multiplexing ability of next-generation sequencing (NGS), 

VOA-UDSA has the potential to be adapted to high throughput.

There are several features of using UDS in the outgrowth cultures that must be considered. 

First, viral population studies using the current UDS technology require preceding PCR 

amplification steps which can introduce PCR errors, altering diversity of a viral 

population.36,37 For example, PCR resampling can create biases artificially decreasing 

diversity while PCR misincorporation/sequencing errors can add artifactual diversity to the 

existing viral population.41 To overcome these limitations in deep sequencing, we have 

incorporated Primer ID so that we can account for each individual template that was 

sequenced. It has been demonstrated that the Primer ID approach reduces PCR and 
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sequencing errors significantly and achieves more accurate viral population sampling.32 

Second, because there is so little diversity in these cultures, any residual errors introduced 

from PCR and sequencing must be accounted for so that it is not included as distinct 

lineages. In examining all of our data we chose a 2.5% abundance cutoff for inclusion as a 

viral lineage within a well. This may limit detection of slow growing lineages in a mixture 

with faster growing lineages although a strong correlation seen between two IUPM estimates 

obtained from VOA-UDSA and QVOA suggests that the cutoff seems unlikely to cause a 

significant underestimate of the size of the reservoir. Third, while the factors that determine 

the complexity of the latent reservoir are poorly understood, identical viruses can be 

detected as growing out from separate cells, likely due to clonal expansion of HIV-1-infected 

CD4+ T cells,42 as also assessed by sequencing the V1–V3 region of the env gene in this 

study. To account for this phenomenon in estimating IUPM, we have corrected for 

unobservable identical lineages in the same well. This correction is not applicable for 

participants with an absence of diversity in the latent reservoir, such as those who are acutely 

infected or initiate therapy during acute infection. However, in North Carolina for example, 

only about 1% of people who were newly diagnosed with HIV-1 were diagnosed during 

acute HIV infection.43 Thus, at least for now, the number of people where VOA-UDSA is 

inappropriate may not be significant even if all people start therapy when diagnosed with 

HIV-1. In our unpublished study of the generation of diversity after infection, we have found 

significant diversity in the V1–V3 region of plasma virus by one year of infection (SZ, 

unpublished observation); while this observation did not include virus in the latent reservoir, 

it does suggest that restricted diversity of the viral population will be relevant only for the 

relatively small fraction of people who start therapy within the first year or two of infection.

In this analysis we have evaluated the quality of the data that can be obtained using VOA-

UDSA to examine the viral lineages in the QVOA outgrowth wells and thus IUPM. There 

are additional improvements that can be explored to determine the utility of this approach. 

First, it is necessary to define a VOA-UDSA protocol in terms of the number of cells, the 

number of wells, and the length of time for outgrowth so that there can be standardized 

reporting to allow comparison to other methods. Second, since VOA-UDSA could be done 

with as few as several hundred copies of viral RNA for a cDNA reaction, it may be possible 

to detect induced viruses shortly after T cell activation, perhaps even without viral 

expansion. This would eliminate the necessity of using either PBMCs from healthy donors 

or a T-cell line expressing CD4, CCR5, and CXCR4 for outgrowth. This approach, however, 

may lead to the overestimation of IUPM titers since VOA-UDSA would detect all genomes 

able to produce virus particles including those from replication defective proviruses. Third, 

because identical sequences are a challenge for this assay, IUPM estimates using other 

regions such as gag or a longer env region, V1–V5, need to be explored to compare with 

IUPM estimates obtained from the V1–V3 region. This could enhance the accuracy of the 

IUPM estimates by reducing the frequency of detecting identical sequences between wells 

due to the relatively short amplicon, V1–V3.

While the accuracy of the QVOA is determined by limiting dilution, the VOA-UDSA 

generates a specific count of outgrowth events given the number of cells tested linking the 

accuracy to the total number of independent outgrowth events recorded. Future work will 
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determine if this approach can improve the accuracy of measurements of the latent reservoir 

and/or reduce the number of cells needed to attain a desired level of accuracy.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
A, Arbitrary abundance cut-off for the minimum abundance of individual consensus 

sequences. The arbitrary cut-off value, 2.5%, for the minimum abundance of individual 

consensus sequences is shown in dotted line with an arrowhead. B, C, and D, Viral Lineages 

detected in a single well. Phylogenetic trees showing examples of 2, 3, and 4 viral lineages 

detected in a single well are shown in B, C, and D, respectively. Trees were generated using 

MUSCLE (v3.8.1). Arrows indicate distinct viral lineages detected in each well.
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Figure 2. 
Representative neighbor-joining phylogenetic trees of viral lineages to determine DVLs. A, 

The phylogenetic tree shows viral lineages detected in wells (n=8 for A1, n=5 for A2) 

derived from two participants in acute infection, A1 and A2. Individual wells are color 

coded. The tree was generated using MEGA 5.10. B, The phylogenetic tree shows viral 

lineages detected in wells (n=6) derived from a chronically infected participant, C11. 

Individual DVLs identified are indicated. Different wells are color coded and the tree was 

generated using MEGA 5.10. C, % DVL observed in each chronically infected participant. 

The horizontal dotted line indicates average % DVL.
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Figure 3. 
Correlation between VOA-UDSA and QVOA. A, The IUPM estimates of 17 chronically 

infected participants obtained independently by VOA-UDSA and QVOA are shown. B, The 

IUPM estimates obtained from VOA-UDSA strongly correlate with the IUPM estimates 

obtained from QVOA. The statistics were obtained from the Spearman rank correlation test 

and linear regression analysis was used to form the best-fitting straight line. C, The IUPM 

estimates obtained from the two assays, VOA-UDSA and QVOA were compared by the 

Wilcoxon matched-pairs test.
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Figure 4. 
Simulation of VOA-UDSA introduced recombination events. A representative highlighter 

plot and phylogenetic tree reveal the low frequency of method-introduced recombination 

events. Method-introduced recombination events was simulated by mixing two different 

RNA samples for cDNA reaction. Abundance, the number of consensus sequences, of 

parental sequence A and B is shown in blue and red, respectively. The number of consensus 

sequences of offspring generated by either recombination or point mutation is shown in 

green. The recombinant sequence shown in the highlighter plot and the phylogenetic tree is 

indicated with a box and a circle, respectively.
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Table 1

Data obtained from VOA-UDSA and QVOA

Patient
ID

No. of 
Cells
(in 

million)
QVOA
Total Wells

QVOA
p24+ Wells

VOA-UDSA
Wells

No. of
VL

No. of
VL/well

No. of
DVL % DVL

IUPM-QVOA
(95% CI)

IUPM-VOA-UDSA
(95% CI)

C1 2.5 36 4 4 12 3.00 12 100 0.05 (0.017–0.120) 0.14 (0.077–0.238)

C2 2.5 36 5 5 15 3.00 7 47 0.07 (0.031–0.154) 0.17 (0.104–0.287)

C3 2.5 18 5 5 5 1.00 4 80 0.12 (0.049–0.287) 0.12 (0.048–0.278)

C4 2.5 18 5 3 3 1.00 3 100 0.14 (0.064–0.321) 0.12 (0.051–0.293)

C5 2.5 14 4 3 5 1.67 3 60 0.15 (0.062–0.361) 0.20 (0.087–0.437)

C6 2.5 18 7 6 12 2.00 4 33 0.18 (0.085–0.377) 0.34(0.199–0.596)

C7 2.5 36 15 15 56 3.73 39 71 0.22 (0.134–0.360) 0.64 (0.492–0.830)

C8 2.5 36 22 22 86 3.91 26 30 0.41 (0.273–0.617) 1.06 (0.856–1.309)

C9 2.5 12 9 6 11 1.83 8 73 0.44 (0.221–0.873) 0.60 (0.352–1.025)

C10 2.5 18 12 6 19 3.17 19 100 0.54 (0.323–0.912) 0.73 (0.490–1.099)

C11 2.5 12 9 6 16 2.67 9 56 0.62 (0.337–1.137) 0.89 (0.556–1.413)

C12 2.5 36 32 32 123 3.84 65 53 0.94 (0.632–1.393) 1.42 (1.187–1.690)

C13 0.5 6 4 4 7 1.75 7 100 1.24 (0.743–2.084) 2.55 (1.216–5.360)

C14 0.5 6 3 3 5 1.67 3 60 1.82 (0.902–3.658) 2.12 (0.864–5.178)

C15 0.5 6 5 5 9 1.80 6 67 2.49 (1.103–5.625) 3.66 (1.882–7.101)

C16 0.5 6 4 4 8 2.00 8 100 2.52 (1.158–5.462) 2.92 (1.457–5.839)

C17 0.5 6 4 4 6 1.50 6 100 3.49 (1.689–7.196) 2.19 (0.982–4.875)
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