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ABSTRACT

Validating the sampling depth and reducing sequencing errors are critical for studies of viral populations using next-generation
sequencing (NGS). We previously described the use of Primer ID to tag each viral RNA template with a block of degenerate nu-
cleotides in the cDNA primer. We now show that low-abundance Primer IDs (offspring Primer IDs) are generated due to PCR/
sequencing errors. These artifactual Primer IDs can be removed using a cutoff model for the number of reads required to make a
template consensus sequence. We have modeled the fraction of sequences lost due to Primer ID resampling. For a typical se-
quencing run, less than 10% of the raw reads are lost to offspring Primer ID filtering and resampling. The remaining raw reads
are used to correct for PCR resampling and sequencing errors. We also demonstrate that Primer ID reveals bias intrinsic to PCR,
especially at low template input or utilization. cDNA synthesis and PCR convert ca. 20% of RNA templates into recoverable se-
quences, and 30-fold sequence coverage recovers most of these template sequences. We have directly measured the residual error
rate to be around 1 in 10,000 nucleotides. We use this error rate and the Poisson distribution to define the cutoff to identify pre-
existing drug resistance mutations at low abundance in an HIV-infected subject. Collectively, these studies show that >90% of
the raw sequence reads can be used to validate template sampling depth and to dramatically reduce the error rate in assessing a
genetically diverse viral population using NGS.

IMPORTANCE

Although next-generation sequencing (NGS) has revolutionized sequencing strategies, it suffers from serious limitations in de-
fining sequence heterogeneity in a genetically diverse population, such as HIV-1 due to PCR resampling and PCR/sequencing
errors. The Primer ID approach reveals the true sampling depth and greatly reduces errors. Knowing the sampling depth allows
the construction of a model of how to maximize the recovery of sequences from input templates and to reduce resampling of the
Primer ID so that appropriate multiplexing can be included in the experimental design. With the defined sampling depth and
measured error rate, we are able to assign cutoffs for the accurate detection of minority variants in viral populations. This ap-
proach allows the power of NGS to be realized without having to guess about sampling depth or to ignore the problem of PCR
resampling, while also being able to correct most of the errors in the data set.

Studies of viral population diversity are increasingly using next-
generation sequencing (NGS) technologies to extend the

depth of population sampling. Key aspects of understanding with-
in-host viral population diversity are knowing the true depth of
template/genome sampling and documenting the accuracy of the
sequencing method to validate the detection of rare variants. Cur-
rent approaches using NGS in viral population studies usually
require a preceding PCR amplification step. Thus, PCR errors,
including nucleotide misincorporation and PCR-mediated re-
combination, and errors during the sequencing step introduce
artificial diversity into the apparent sequence population (1, 2). In
addition, the repetitive sequencing of PCR copies of the original
templates (PCR resampling) gives the appearance of artificial ho-
mogeneity in the population (3). A corollary of understanding
true template sampling depth is then being able to apply statistical
tools to define the sensitivity of detecting and the accuracy of
quantifying minor variants (4, 5).

We previously showed that including a degenerate nucleotide
block (Primer ID) in the cDNA synthesis primer overcomes lim-
itations in deep sequencing protocols that require a preceding
PCR step (6, 7). The inclusion of the Primer ID tag allows each

original template copy to have its own identifying sequence. When
the same Primer ID sequence is observed during the subsequent
sequencing step this can be identified as resequencing of the same
original cDNA template, i.e., PCR resampling. In addition, once
those sequences have been identified as resampled they can be
pooled to create a corrected consensus sequence for each original
template, a step that removes most method-introduced errors.
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Finally, the total number of template consensus sequences defines
the depth of sampling of the viral population.

However, we and others (8) have observed several significant
technical issues that can confuse the use of the Primer ID ap-
proach. There is often a wide range of sequence read numbers for
different Primer IDs in the raw data set, with most of the Primer
IDs observed present at low frequency (i.e., found in only one or
two raw reads), while a few of the Primer IDs are present at very
high read numbers (Fig. 1). Due to the relatively high error rate of
NGS platforms, it is now clear that one Primer ID can generate
“offspring” Primer IDs due to sequencing errors within the
Primer ID sequence block itself, which could confound the allelic
frequency with low-frequency Primer IDs. Conversely, high-fre-
quency Primer ID reads raises the concern that the Primer ID may
cause bias during the PCR step, inducing some templates to be
efficiently amplified and thus giving rise to allelic skewing. Finally,
chance resampling of the Primer ID sequence from the starting
primer library would result in template mixtures during construc-
tion of consensus sequences which would reduce template sam-
pling, a problem that would be exacerbated if specific Primer IDs
are selected out of the primer library population due to enhanced
binding to the template.

We describe here the adaptation of the Primer ID approach to
the Illumina MiSeq platform and explore these suggested prob-
lems in the use of Primer ID. We also assess the error rate of NGS
sequencing when incorporating the Primer ID approach using an
authentic virion RNA template and show how we can use this
authentic error rate to guide the interpretation of mutations de-
tected at low abundance.

MATERIALS AND METHODS
Cells. The following reagent was obtained through the AIDS Research and
Reference Reagent Program, Division of AIDS, National Institute of Al-
lergy and Infectious Disease, National Institutes of Health (NIH): 8E5/

LAV provided by Thomas Folks. Each 8E5/LAV cell contains a single
integrated copy of defective HIV-1 DNA. Cells are CD4 negative and
produce virions that do not have HIV-1 reverse transcriptase (9). Repli-
cation of the viral genome in its DNA form in this cell line is accomplished
with the high-fidelity host replication machinery. Thus, these cells can be
a source of large amounts of viral particles that should have identical
genome sequences for use to estimate the residual error rate. Cells were
cultured in RPMI medium containing 10% fetal bovine serum. Cultures
were passaged every 2 days at a concentration of 106 cells/ml. To collect
virus, the cells were spun down, and supernatants were collected and
frozen at �80°C.

Human plasma samples. Plasma samples were obtained from two
individuals infected with subtype B HIV-1. All subjects signed informed
consent forms approved by the appropriate institutional review board.

RNA extraction, cDNA synthesis, and MiSeq library construction.
Viral RNA was extracted from plasma samples or 8E5 cell supernatants
using a QIAamp viral RNA minikit (Qiagen, Valenicia, CA). cDNA prim-
ers were comprised at the 3= end of an HIV-1 gene-specific primer se-
quence, followed by a 4-nucleotide spacer and then a 9-nucleotide ran-
domized sequence and, at the 5= end, a sequence block for PCR priming.
The env V1-to-V3 region Primer ID cDNA primer was 5=-GTGACTGGA
GTTCAGACGTGTGCTCTTCCGATCTNNNNNNNNNCAGTCCATT
TTGCTCTACTAATGTTACAATGTGC-3= (HBX2 numbering for the
gene-specific region: 7238 to 7209). The protease coding domain Primer
ID cDNA primer was 5=-GTGACTGGAGTTCAGACGTGTGCTCTT
CCGATCTNNNNNNNNNCAGTTTAACTTTTGGGCCATCCATTCC-
3= (HBX2 number for the gene-specific region: 2614 to 2592). All primers
were synthesized by Integrated DNA Technologies (Coralville, IA) with
hand mixing of random nucleotides and standard desalting for purifica-
tion.

Based on the viral load tests of an HIV� plasma sample, cDNA reac-
tions were carried out in triplicate with a dilution series of 10,000 copies,
3,333 copies, or 1,111 copies of viral RNA template in each reaction and
370 copies of viral RNA with two repeats in the serial dilution experiment.
Serial titrations of 8E5 RNA templates isolated from culture supernatants
were made, and the titration generating around 10,000 consensus se-
quences or fewer was used for the analysis. We used Superscript III reverse

FIG 1 Example of Primer ID distribution. Most of the Primer IDs appear at very low frequency (once or twice), while some of them appear several hundreds of
times in the raw read output. Artifacts of mutations within the Primer ID (offspring) and PCR amplification skewing and primer ID resampling are suggested as
features that help shape the observed distribution of reads per Primer ID.
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transcriptase (Life Technologies, Grand Island, NY) for cDNA synthesis
except for the error rate assessment experiment set 3, in which we used
AccuScript Hi-Fi reverse transcriptase (Agilent Technologies, Santa Clara,
CA) for cDNA synthesis. In the Superscript III set, each cDNA reaction
mixture contained 10 U of Superscript III, 2 U of RNaseOut (Life Tech-
nologies), 5 mM dithiothreitol (DTT), 0.5 mM deoxynucleoside triphos-
phates (dNTPs), and 0.25 �M cDNA primer in a total volume of 60 �l. In
the AccuScript Hi-Fi set, each cDNA reaction mixture contained 3 �l of
AccuScript Hi-Fi reverse transcriptase, 3 �l of RNaseBlock (Agilent Tech-
nologies), 10 mM DTT, 0.5 mM dNTPs, and 0.25 �M cDNA primer in a
total volume of 60 �l. The primers, dNTPs, and templates were mixed and
heated at 65°C for 5 min and then cooled on ice for 1 min (Superscript III
sets) or slowly cooled at room temperature for 10 min (AccuScript set).
The reaction mixtures were incubated at 50°C for 1 h and then at 55°C for
1 h. Enzymes were inactivated at 70°C for 15 min. We then added 1 �l of
RNase H (Life Technologies) to each reaction mixture, followed by incu-
bation at 37°C for 20 min.

cDNA purification. cDNA was purified using Agencourt RNAClean
XP beads (Beckman Coulter, Brea, CA) to remove unused cDNA primer.
The ratio of the volume of beads to cDNA reaction was 0.6. The beads
were washed four times with 70% ethanol. cDNA was eluted in distilled
water.

PCR amplification. All cDNA was used for amplification after pu-
rification. We used KAPA2G Robust Hotstart (Kapa Biosystems,
Woburn, MA) or Phusion DNA polymerase (New England BioLabs,
Ipswich, MA) as the first-round PCR enzyme. The first-round PCR
forward primer was 5=-GCCTCCCTCGCGCCATCAGAGATGTGTA
TAAGAGACAGNNNNTTATGGGATCAAAGCCTAAAGCCATG
TGTA-3= for the env V1-to-V3 region, and 5=-GCCTCCCTCGCGCC
ATCAGAGATGTGTATAAGAGACAGNNNNCAGGAGCCGATAG
ACAAGGAAC-3= for the protease region. The first-round PCR reverse
primer was 5=-GTGACTGGAGTTCAGACGTGTGCTC-3=. The PCR cy-
cling protocol for KAPA2G Robust was initial denaturation at 95°C for 1
min, 25 cycles of 95°C for 15 s, 58°C for 1 min, and 72°C for 30 s, and then
a final extension at 72°C for 3 min. The PCR cycling protocol for Phusion
was initial denaturation at 98°C for 30 s, 25 cycles of 98°C for 10 s and 72°C
for 1 min, and then a final extension at 72°C for 5 min.

First-round PCR products were purified using Agencourt Ampure XP
beads (Beckman Coulter). The ratio of volume of beads to PCR volume
was 0.6. The beads were washed three times with 70% ethanol. cDNA was
eluted in 50 �l of distilled water and stored at �20°C. We used 2 �l of the
purified first-round PCR product for the second-round amplification,
with the KAPA HiFi PCR Hotstart as a second-round PCR polymerase.
The second-round forward primer was 5=-AATGATACGGCGACCACC
GAGATCTACACGCCTCCCTCGCGCCATCAGAGATGTG-3=, and the
reverse primer was 5=-CAAGCAGAAGACGGCATACGAGATNNNNN
NGTGACTGGAGTTCAGACGTGTGCTC-3=. Second-round reverse prim-
ers included a 6-nucleotide long index region. We used 24 indexed prim-
ers, allowing us to multiplex as many as 24 samples in the same sequencing
run. The PCR primer sequences were matched with Illumina sequencing
adapters, allowing the Primer ID region to always be sequenced at the
second end (R2).

The size of the V1/V3 env amplicon was around 835 bp, covering
HXB2 6585-7208 on the HIV-1 genome, and the size of the protease
amplicon was 548 bp, covering HXB2 2237-2591 on the HIV-1 genome.

Sequencing. We used 300-bp paired-end multiplex Illumina MiSeq
(San Diego, CA) to sequence the constructed libraries, employing the
Illumina pipeline (v1.8.2) for the initial processing of data, including sep-
arating raw sequences by their indexes.

Template consensus pipelines. In-house Ruby (v2.1.2) scripts were
used to process raw sequence reads in FASTq format. We initially checked
the integrity of the information block, i.e., the Primer ID, spacer, and
gene-specific primer region on each sequence read and discarded those
without an intact information block. Quality raw sequence reads from
both ends (R1 and R2) were then paired. We searched each raw sequence

in the R2 region for the Primer ID. All individual Primer IDs were then
tabulated for the number of reads with that Primer ID. We used a Primer
ID read number cutoff model (described below) to determine the mini-
mum number of reads required to create a template consensus sequence.
Primer IDs detected in a number of reads above the cutoff were kept, and
template consensus sequences were constructed for both read ends. We
used the majority nucleotide at each position to create a consensus nucle-
otide for that position, and ambiguity nucleotides were also called at po-
sitions where there were equal numbers of different nucleotides. Consen-
sus sequences with ambiguity nucleotides were then discarded. Of note,
we did not use sequence alignment programs to build a consensus se-
quence from aligned raw sequences, since insertion/deletion errors are
much fewer in MiSeq compared to 454 sequencing (see Ruby scripts in the
supplemental material). Since Primer IDs are read at very different fre-
quencies within a data set, when Primer ID resampling occurs, i.e., two
templates with the same Primer ID, in most circumstances the templates
will have different numbers of Primer ID reads, and the template with
fewer Primer ID reads will be lost during the process of making a template
consensus sequence.

Combination of template consensus sequences with an overlap re-
gion. There was a 181-nucleotide overlap region of the protease paired-
end reads. We first compared the 181 nucleotides of paired consensus
sequences (181 nucleotides at the tail of R1 consensus and 181 nucleotides
at the head of R2 consensus) and made a combined consensus sequence if
they agreed. We used MUSCLE (v3.8.1) (10, 11) to make an alignment of
the rest of the paired-end template consensus sequences and, if the actual
overlap region was not 181 bp but a 100% match, combined sequences
were still made for the subsequent analysis.

Primer ID read number cutoff model. In the previous pipeline ap-
proach for creating a consensus sequence, Primer IDs appearing three
times or more were used to create a consensus sequence for that template
(6–8). However, when a Primer ID gets amplified and sequenced, a small
fraction of the amplified Primer IDs are mutated due to the PCR and
sequencing errors, generating offspring Primer IDs. These offspring
Primer IDs can be present as different sequences with various frequencies.
We used a simulation to develop a new approach to determining the
number of Primer ID reads required as a cutoff for creating a consensus
sequence. In the simulation, we first generated a parental Primer ID with
a random sequence of a certain abundance. We then mutated all of these
Primer IDs given a specified mutation rate to generate a pool of offspring
Primer IDs. Since the polymerase error rate is at least 2 logs lower than the
MiSeq sequencing error rate, we simplified the model by including only a
single conservative sequencing error rate (0.02 per site) (12). We further
counted the frequencies of each offspring Primer IDs. We performed the
process using an abundance of parental Primer IDs from 10 to 20,000, and
the whole process was repeated 1,000 times. Finally, we obtained the cor-
relation of the abundance of observed parental Primer IDs (m) and the
maximum frequency of a specific offspring Primer ID (No) with standard
deviation (SNo).

We calculated the 95% confidence intervals (CI) for No. Given an
observed m, the cutoff for the offspring Primer ID (c) was determined as
the upper limit of 95% CI of No, given by c � No � 1.96SNo. We further fit
the simulated pairs of mean m value and c into a polynomial regression
model. Since No had a positive correlation with m, the Primer ID read
number cutoff of a sample with multiple parental Primer IDs was deter-
mined as the offspring cutoff of the most abundant parental Primer ID.
Thus, we obtained the formula to calculate the cutoff to make template
consensus sequences based on the most abundant Primer ID in one li-
brary.

Primer IDs with a number of reads above the cutoff were used to create
a template consensus sequence. We coded this formula into the template
consensus creation script and used it to calculate the Primer ID read
number cutoff for each sample. We used 8-nucleotide Primer IDs in this
simulation model. However, by changing the variables in the provided
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Ruby script, similar simulations can be performed for other lengths of
Primer ID.

Primer ID distribution simulations. We used Ruby scripts (see the
scripts in the supplemental material) to simulate Primer ID distributions.
We used three different assumptions. In model 1, we assumed there were
no sequencing errors within the 8-nucleotide Primer ID sequence block,
and all templates were included in the PCR with 100% amplification effi-
ciency. In model 2, we assumed there were sequencing errors within the
Primer ID sequence block (1% substitution rate), and all templates were
used with 100% efficiency. In model 3, we included a sampling of 50% of
the templates at each of the first 10 rounds of PCR, i.e., we modeled a
situation where only 50% of the templates were copied in each cycle, and
we included a 1% error rate in the Primer ID sequence block.

In the simulations a certain number of converted templates were first
generated by the scripts, and each received a random Primer ID of 8
nucleotides using a pseudorandom number generator (PRNG). In models
1 and 2, the template/Primer ID pairs were directly transferred to the
sequencing loops. In model 3 with PCR bias, we simulated the PCR am-
plification with 50% template utilization in each cycle for 10 cycles and
transferred the biased template/Primer ID pairs to the sequencing loops.
In models 2 and 3, we mutated the Primer ID sequence with the preset
error rate at 1% to generate the mutated template/Primer ID pair. During
the sequencing loops, template/Primer ID pools were sampled for a num-
ber of times equal to the number of raw sequences using the PRNG. Thus,
we obtained the template/Primer ID sample pairs after sequencing. We
further ran these pairs through the template consensus pipeline to gener-
ate consensus sequences as we did for control and clinical samples. We
plotted the Primer ID distributions from the models and compared them
with an experiment data set. We further calculated the recovery of tem-
plates (using Primer IDs to create template consensus sequences) and the
percentage of consensus sequences that included more than one template
(Primer ID resampling) under different conditions of number of template
and raw sequences using the model 3 assumptions. The recovery rate and
Primer ID resampling percentage were the average number of 100 repeats.

Error rate assessment. We sequenced the HIV-1 env gene V1 through
V3 region and the pro gene/protease coding domain for the 8E5 control
samples and obtained template consensus sequences using the protocol
and pipeline described above. We first tried several titrations of extracted
8E5 RNA template and used the titration that generated around 10,000
unique template consensus sequences per reaction. We further performed
an experiment using the three sets of enzyme combinations with the de-
termined RNA titration. After template consensus sequence formation,
we used the following algorithm to calculate the error rate. We first ob-
tained a sample consensus sequence as a reference sequence by simple
alignment of all template consensus sequences from one sample. We then
aligned each of the template consensus sequences with the reference se-
quence using MUSCLE and annotated each consensus sequence at posi-
tions with substitutions, insertions, or deletions. Template consensus se-
quences with five or more nucleotide differences from the reference
sequence were manually examined using the NCBI BLAST sequencing
analysis tool (13) and Los Alamos HIV database HIV Sequence Locator
tool (http://www.hiv.lanl.gov/content/sequence/LOCATE/locate.html).
Consensus sequences with mispriming (defined as at least a 5-nucleotide
shift from the priming sites of either end) or undetermined sequences (no
match or only a poor match from BLAST) were filtered out. We further
filtered out consensus sequences with either in-frame insertions/deletions
or frameshift errors. We then calculated the substitution rate and the types
of substitutions using the remaining template consensus sequences for
each end. In the protease control, we also calculated the substitution rate
for the combined template consensus sequences, since there was an over-
lapping region between the two sequenced ends.

Use of the Poisson distribution in assessing residual errors of tem-
plate consensus sequences. Since next-generation sequencing (NGS) has
greatly increased the depth of sequencing of viral populations, it is essen-
tial to generate validated cutoffs for mutations seen at low abundances

from residual method error. One of the approaches is to study how often
the random errors appear based on a measured error rate and use this
distribution of random error among a known number of sampled ge-
nomes as a “floor” or cutoff for rare mutations.

If one sequencing run generates n number of template consensus se-
quences of m base pairs in length, and the method error from the controls
is measured to be p, the probability of observing k mutations at the posi-
tion due to the method error fits the Poisson distribution. The number of
positions with k mutations is given by:

f�k� � t
�np�ke��np�

k !

where k � 0,1,2,3,. . .n, k! is the factorial of k, e is Euler’s number (e �
2.71828. . .), n is number of template consensus sequences, and t is the
length of the sequenced fragment in base pairs.

This approach allows a description of the distribution of method er-
rors. We can observe the number of positions (Nk) with k (k � 0,1,2,3,. . .)
variant(s) from actual sequencing data. If Nk is less or close to f(k), we
cannot distinguish true variants from method error. When Nk is signifi-
cantly greater than f(k), the true variants are more abundant than the
method error. Thus, the abundance cutoff for errors is determined as the
first k value where Nk is significantly greater than f(k).

Calculation of confidence intervals of minority mutations and de-
tection limits. We used the Clopper-Pearson method to calculate the 95%
binomial confidence intervals for minority mutations in the clinical sam-
ple. We used R (v3.0.0) (14) to perform the calculations. We further
calculated the probability of detecting a rare mutation above the abun-
dance cutoff for errors based on the Poisson distribution.

Raw sequence reads have been deposited at the NCBI Short Read Ar-
chive (experiment accession number SRX844885).

RESULTS
Indexing PCR amplicons for sequencing using MiSeq. We first
adapted the Primer ID approach to the Illumina MiSeq platform
(15). Briefly, cDNA was synthesized using primers with a block of
degenerate nucleotides (Primer ID), followed by two rounds of
PCR amplification to incorporate MiSeq adaptors and 6-nucleo-
tide indexes for multiplexing of different samples for the same
sequencing run. In addition, we added a 4-nucleotide degenerate
block in the forward PCR primer. Paired-end sequencing
started from the degeneracies present at both ends (16), allow-
ing individual amplicons to be detected as distinct sequencing
clusters (Fig. 2).

Effect of sequencing errors within the Primer ID sequence.
Sequencing errors within the Primer ID sequence block itself will
create a new Primer ID sequence (offspring Primer ID) that will
over-represent the original template among the final group of
consensus sequences. We examined the sequencing quality score
for the Primer IDs that appeared once and those that appeared
with the highest frequency from a sample in a template dilution
experiment (described below). As shown in Fig. 3a, the Primer IDs
that appeared once came from sequence reads that on average had
significantly lower quality scores than the scores for the higher
frequency reads. This observation suggests that low-abundance
Primer ID reads are at least in part the result of misreading of
more-abundant Primer IDs that are being resampled (after the
PCR amplification step) in the sequencing.

We further used one of the dilution experiment samples (one
of the two repeats at the 1:27 dilution, estimated 370 input tem-
plates) to study the sequence similarity of Primer IDs present at
different abundances. In this sample there were 11,208 Primer IDs
recovered in the sequencing data, with 8,121 appearing only once,
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2,966 appearing more than once but below the calculated Primer
ID read number cutoff (c � 54) (Primer ID read number cutoff
described below), and 121 appearing above the cutoff (consensus
Primer IDs). Figure 3b shows the Primer ID distribution and the
percentage of Primer IDs with one or two nucleotide differences
from an abundant Primer ID. Among the Primer IDs that appear
only once in the raw sequence reads, there are 6 and 43% within
one nucleotide or two nucleotides of an abundant Primer ID,
respectively. With increasing raw sequence reads per Primer ID,
the percentage of Primer IDs with two-nucleotide differences
(green triangles) drops quickly to below 20%, while the percent-
age of Primer IDs with a one-nucleotide difference (red squares)
increases quickly above 80%; the analysis was stopped at Primer
IDs with 23 raw reads due to the small number of Primer IDs
obtained with the limited number of templates used. Overall,
among Primer IDs appearing more than once but below the cutoff
at 54 raw reads, 57% were different by one nucleotide from an
abundant Primer ID, a number that is significantly higher than the
number estimated using random Primer IDs selected by chance
(4.3%), and an additional 22% were within two nucleotides of an
abundant Primer ID. In addition, the one-off nucleotide positions
were evenly distributed across the 8-nucleotide Primer ID. This
phenomenon suggests that Primer IDs at low abundance are off-
spring Primer IDs generated from abundantly read Primer IDs,
and those at very low abundance can be Primer IDs with multiple
changes from an abundant Primer ID due to low sequence quality.
These observations provide the rationale for trimming the low-
abundance reads to focus on true template consensus sequences.

Primer ID read number cutoff determination. In an effort to
correct the offspring Primer ID problem, we have modeled this
phenomenon to develop an algorithm to set a cutoff for the num-

ber of raw reads needed for a Primer ID to be included as a con-
sensus sequence. In this model we calculated the maximum oc-
currence of offspring Primer IDs given a specified number of
identical Primer ID reads and a combined error rate for PCR mis-
incorporation and sequencing error conservatively set at 2% (see
Materials and Methods). For this model the required number of
sequence reads with the same Primer ID to make a consensus
sequence was designed to be greater than the number of offspring
Primer IDs with the highest frequency. Figure 4 shows the simu-
lated number of parental Primer ID and its corresponding maxi-
mum number of offspring Primer ID. The Primer ID read number
cutoff is determined by the maximum occurrence of offspring
Primer IDs of the maximum occurrence of Primer IDs observed in
a sequencing library. For instance, if the maximum occurrence of
a specific Primer ID (m) in a library is 5,117, the simulated median
number of maximum occurrence of an offspring Primer ID (No) is
46, and the Primer ID read number cutoff (c) is determined as 55
(46 plus 1.96 times the standard deviation, which is 4.7 in this
case). If the maximum occurrence of observed Primer IDs (m) is
292, the Primer ID read number cutoff (c) is estimated at 8.

The formula of to calculate the Primer ID read number cutoff (c)
based on the maximum abundance of Primer ID in one library (m) is
as follows: c � (�1.24 � 10�21m6) � (3.53 � 10�17m5) � (3.90 �
10�13m4) � (2.12 � 10�9m3) � (6.06 � 10�6m2) � 0.018m � 3.15.

The minimum cutoff is 2 since we need at least three raw reads
to create a consensus read based on majority rule. There is a cor-
ollary of this model. Under circumstances where the same total
number of raw reads is obtained, the smaller the amount of tem-
plate used, the greater the number of reads per template, thus
requiring a larger cutoff to avoid offspring.

We examined the cutoff values from the construction of con-

FIG 2 Adaptation of the Primer ID approach to the MiSeq platform. MiSeq library construction with the Primer ID approach from viral RNA template was used
for sequencing. The Primer ID (yellow, N8) is included in the cDNA primer, along with a PCR primer site (brown), and the upstream primer includes four
randomized bases to add diversity to the initial sequence read (orange, N4). Illumina indexed primers (green with purple barcode) are included in the last round
of PCR. The paired-end sequence of region 1 (R1) and region 2 (R2), which may or may not overlap in the middle, are indicated.
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sensus sequences using a serial dilution experiment. A Primer ID
cDNA primer, PCR amplification, and MiSeq sequencing were
used to sequence the HIV-1 env gene from V1 through V3 using
viral RNA extracted from the plasma of an infected subject. Also,

a serial dilution series of the starting viral RNA templates (1:1, 1:3,
1:9, and 1:27) was included, and each RNA dilution level was
amplified in duplicate/parallel amplifications. As shown in Fig. 5,
there was not a strong linear correlation between either the num-

FIG 3 Assessment of offspring Primer IDs. (a) The Primer ID sequence for “singles” have significantly lower quality scores than the Primer ID sequences at the
highest frequency. Primer IDs were 8 nucleotides long. (b) Primer ID distribution and percentages of Primer IDs at low abundance (i.e., read less than 23 times)
with one or two nucleotide differences from an abundant consensus Primer ID. Data were generated from the dilution experiment sample RSD11. This example
was chosen to highlight the issue of offspring Primer IDs, which is exacerbated when low-input template copies are used. In this case, the total number of
consensus sequences above the cutoff was only 121, which is why there is not a symmetrical distribution of raw reads per Primer ID. Symbols for one (red squares)
and two (green triangles) nucleotide differences are read on the percentage scale, while the symbol for number of Primer IDs (blue diamonds) is read on the log
scale.
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FIG 4 Simulated correlation of the abundance of observed parental Primer IDs and the maximum abundance of the offspring Primer ID. Open squares indicate
the mean number of maximum abundances of offspring Primer IDs given the observed number of parental Primer IDs. Open circles indicate the upper limit of
the 95% confidence intervals of the maximum abundances of offspring Primer IDs, which serve as the Primer ID read number cutoffs for the given abundances
of observed maximum parental Primer IDs in a sequencing library. 4a, observed parental Primer ID from 0 to 20,000; 4b, observed parental Primer ID from 0 to
2,000.
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ber of input templates and the total number of Primer ID se-
quences in the raw sequence data set or the number of input tem-
plates and the number of Primer ID sequences appearing more
than two times (our original strategy for creating a consensus
sequence [6]), when we constrained the trend line to cross the
origin (without any template no Primer IDs will be generated).
However, there was strong linear correlation between the number
of input templates and the number of Primer IDs included using
the Primer ID read number cutoff model for the number of reads
required to build a consensus sequence (R2 � 0.99). We further
bootstrapped the data 10,000 times and estimated the 95% confi-
dence intervals for R2 to be 0.971 to 0.998. In addition, the per-
centage of raw sequence reads with Primer IDs below the cutoff
(discarded sequences) remained relatively constant throughout
all dilutions (6.2 to 6.9%) independent of the Primer ID read
number cutoff, as expected if offspring Primer IDs are being
trimmed from both abundant and less-abundant resampled se-
quences. Put differently, �90% of the raw sequence data was re-
tained and available to create the consensus sequences based on
PCR resampling after removing offspring Primer IDs. Thus, this
model for defining the number of raw reads needed for a Primer
ID sequence to build a template consensus sequence removes low-
abundance offspring Primer IDs (which represent a small fraction
of the total sequences but a large fraction of the total Primer IDs)
that are the result of sequencing and/or PCR errors.

PCR versus Primer ID allelic skewing during amplification.
The distribution of the number of reads of Primer IDs in a raw
sequence data set typically does not match a normal distribution
as would be expected if sequences were being sampled from a

population of sequences that were being equally amplified during
the PCR step (6). As noted above, this represents offspring Primer
IDs at the low end of the distribution, but some sequences are
sampled at much higher levels than expected at the high end of the
distribution (Fig. 1). We used an analysis of repetitive deep se-
quencing runs as an approach to address the question of PCR-
versus Primer ID-induced skewing. We compared the utilization
of Primer ID sequences in several repeat experiments of cDNA
synthesis, PCR amplification, and sequencing using viral RNA
isolated from the supernatant of the clonal cell line 8E5 cells as the
template (9), sequencing both the HIV-1 env V1 to V3 region and
the protease coding domain.

As predicted from random sampling, there was some overlap
in the utilization of Primer ID sequence blocks between repeat
runs (Fig. 6), which gave us an opportunity to see how these iden-
tical sequences were utilized between the runs. We examined the
Primer ID sequences that were the most abundantly read in one
run (the top 10%) for their distribution of read numbers in a
second run. The abundant Primer ID sequences from one run
were randomly distributed in the number of reads in the second
run (Fig. 6, Run 2), suggesting that it is not the Primer ID sequence
itself that is determining the allelic skewing. This comparison was
repeated for two more pairs of runs in the HIV-1 env region and
seven pairs of runs at the HIV-1 protease coding domain with the
same outcome.

The Primer ID sequences that were high in one run were ran-
domly distributed in the second run, but there were still a few
Primer ID sequences that were high in both runs. To determine
whether this was by chance or whether there was something in-

FIG 5 Correlation of the number of total Primer IDs, the number of Primer IDs that appear more than twice, and the number of template consensus
sequences using the Primer ID read number cutoff model as a function of the number of input templates. Primer ID was 8 nucleotides long. The data are
plotted from the experiment shown in the table below the graph, and the percentage of the sequences discarded using the Primer ID read number cutoff
model is shown.
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trinsic to the sequence, we examined the sequences and found no
pattern of similarity among the order of nucleotides. When this
subset of sequences was placed in a neighbor-joining tree they
were widely distributed among a random sampling of Primer ID
sequences. Furthermore, we examined nucleotide abundance at
each position of the 54 Primer IDs that appeared in the top 10%
abundance in both runs from one protease and three env amplifi-
cation and sequencing runs. The percentage of nucleotides at each
position was not significantly different from that expected (calcu-
lated from 5,125 Primer IDs used by both runs in total) (Table 1).
We also compared homopolymers (defined as a sequence of at
least 4 identical nucleotides) in Primer IDs that appeared in top
10% abundance in both runs to the rest of Primer IDs appearing in
both runs. The difference was not statistically significant (P �
0.12). Thus, we conclude that the Primer ID sequence itself is not
responsible for the skewing.

Simulation models reveal that PCR skewing and sequencing/
PCR errors contribute to skewed Primer ID distributions. In an
effort to understand how PCR might induce skewing in a template
number-sensitive way, we modeled Primer ID distribution with
three different assumptions. In model 1, we assumed there were
no sequencing errors within the 8-nucleotide Primer ID sequence

block, and all templates were included in the PCR with 100%
efficiency. In model 2, we assumed there were sequencing errors
within the Primer ID sequence block (1% substitution rate), and
all templates were used with 100% efficiency. In model 3, we in-
cluded a sampling of 50% of the templates at each round of PCR,
i.e., we modeled a situation where only 50% of the templates were
copied in each cycle, for the first 10 cycles, and included a 1% error
rate in the Primer ID sequence block. Figure 7 shows the modeled
distribution under conditions of 300,000 raw sequence reads and
10,000 templates (with 30% conversion of RNA template to
cDNA, i.e., 3,000 converted templates) for the three models. We
also show the observed distribution (blue diamonds) from the
serial dilution experiment sample RSD02, from which 3,076 tem-
plate consensus sequences were created from 300,000 randomly
selected raw sequences (from a total of 334,542 quality raw se-
quences). Without PCR stochastic sampling or sequencing error
in the Primer ID sequence block (Fig. 7; model 1, red squares),
there were no Primer IDs at low abundance, and the distribution
of Primer ID read abundance was confined to a narrow range; the
apparent allelic skewing in high-abundance reads in this model
was due to low-level resampling of the Primer ID on two templates
where the total number of reads for each template was summed,

FIG 6 Comparison of Primer ID distribution in two replications of library construction and sequencing of the same template. The distribution of the top 10%
(in read abundance) Primer IDs from run 1 (red) and the bottom 90% (blue) that also appeared in run 2 were analyzed for their distribution in run 2.

TABLE 1 Comparison of nucleotide abundance at each incorporated Primer ID positiona

Positionb

No. (%) of nucleotidesc

Chi-square P
value

A T C G

Top
10% All observed

Top
10% All observed

Top
10% All observed

Top
10% All observed

1 12 (22) 1,345 (26) 19 (35) 1,472 (29) 12 (22) 1,105 (22) 11 (20) 1,203 (23) 0.76
2 17 (31) 1,372 (27) 19 (35) 1,481 (29) 7 (13) 1,121 (22) 11 (20) 1,151 (22) 0.35
3 11 (20) 1,371 (26) 21 (39) 1,520 (30) 8 (15) 1,090 (21) 14 (26) 1,144 (22) 0.29
4 10 (19) 1,339 (26) 14 (26) 1,490 (29) 14 (26) 1,121 (22) 16 (30) 1,175 (23) 0.41
5 13 (24) 1,352 (26) 22 (41) 1,476 (29) 8 (15) 1,066 (21) 11 (20) 1,231 (24) 0.26
6 11 (20) 1,351 (26) 14 (26) 1,472 (29) 9 (17) 1,050 (20) 20 (37) 1,252 (24) 0.19
7 8 (15) 1,387 (27) 20 (37) 1,382 (27) 13 (24) 1,075 (21) 13 (24) 1,281 (25) 0.15
8 8 (15) 1,350 (26) 16 (30) 1,504 (29) 10 (19) 943 (18) 20 (37) 1,328 (26) 0.15
a We compared the Primer IDs that appeared at the top 10% abundance in both runs to all onserved Primer IDs that appeared in both runs.
b That is, from the 5= end to the 3= end of the internal Primer ID sequence string.
c Top 10%, Primer IDs that appeared at the top 10% abundance in both runs (n � 54); all observed, Primer IDs that appeared in both runs (n � 5,125).
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creating a second “shadow” distribution two times greater than
the main distribution (see below). When sequencing error at the
Primer ID region was introduced in model 2 (Fig. 7; green trian-
gles), we could now see Primer IDs with low abundance appear
due to the offspring Primer ID effect, but the parental Primer IDs
were still confined to a similar range of read numbers as seen with
model 1. After introducing PCR stochastic sampling at 50% for
the early rounds (model 3, purple circles), the model distribution

fit well with the observed distribution (Fig. 7; blue diamonds). We
further modeled the Primer ID read distribution using model 3
assumptions for different template numbers. Table 2 shows the
mean read numbers and standard deviations in the raw sequences
for the individual Primer ID sequences (above the Primer ID read
number cutoff) from observation of the serial dilution experiment
and simulations. The standard deviation was inversely correlated
with number of templates from observation and simulation

FIG 7 Primer ID distribution as observed and compared to three models. Blue diamonds correspond to the Primer ID distribution from a plasma sample. We
modeled Primer ID distributions under three different sets of assumptions. In model 1 (red squares), we assumed that there were no sequencing errors within the
8-nucleotide Primer ID sequence block, and all templates were included in the PCR with 100% efficiency. In model 2 (green triangles), we included 1%
PCR/sequencing substitutions at the Primer ID region. In model 3 (purple circle), we assumed that only half of the templates were used in each of the first 10 cycles
of PCR before sequencing, in addition to a 1% substitution rate in the Primer ID sequence block.
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model 3, a finding consistent with greater skewing at a low input
template number due to suboptimal template sampling during
the PCR step.

Template recovery and Primer ID resampling as a function
of template input and number of raw reads. The use of Primer ID
allows an estimate of how many input templates get converted
into final consensus sequences, and our general experience has
been that for different experiments between 10 and 30% of RNA
templates used in the cDNA reaction are ultimately converted to
consensus sequences (Fig. 5), although this number can be much
lower depending on template quality or priming efficiency (7). We
modeled the number of raw reads needed to sample most of the
template-converted sequences present in the PCR product, in this
case assuming that 30% of the RNA input was converted to se-
quences present in the final PCR product (Fig. 8a). Template re-
covery increases as the number of raw reads increases and reaches
a plateau as the available template sequences approach full recov-
ery. For instance, with 1,000 converted templates 95% of template
sequences are recovered with about 30,000 raw reads. With 3,000
converted templates 100,000 raw reads are needed to get 93% of
template sequences. Based on this simulation there should be at
least 30-fold coverage in raw reads over the number of converted
templates to maximize template recovery while minimizing the
number of reads committed to each template that are used to
build a consensus sequence. The use of 30-fold coverage for each
converted template should be a factor in deciding the number of
samples to pool for multiplexing given a certain capacity of the
sequencing instrument. Greater coverage is not detrimental but
does result in the need for a greater Primer ID read number cutoff
number and underutilization of the capacity of the sequencing
instrument.

Primer ID resampling can limit the number of templates that
can be recovered since two templates with the same Primer ID will
be pooled for building the consensus sequence, but the two tem-
plates will usually have different numbers of raw reads causing the
lower-read template to be lost during the assembly of the consen-
sus sequence. The resampling of the Primer ID from the starting
Primer ID sequence library is a statistical problem analogous to
the “Birthday Problem” (17). We calculated the percentage of
Primer IDs used by more than one template (Primer ID resam-
pling) with different numbers of converted templates and raw
sequencing reads with a Primer ID random sequence block of 8
nucleotides (Fig. 8b). Greater numbers of converted templates
resulted in a greater extent of Primer ID resampling. Increasing
raw reads decreases apparent Primer ID resampling within a cer-
tain range, but this is mostly due to the increase in template recov-
ery (denominator). Based on this modeling it is possible to define

conditions where there are a sufficient number of raw reads to
have most templates recovered with only a small percentage of the
Primer IDs resampled. For instance, with 3,000 converted tem-
plates and 100,000 raw reads, only 2.4% of template consensus
sequences recovered are from Primer IDs that were used for more
than one template. Primer ID resampling increased greatly when
more than 10,000 converted templates were used as would be
expected with the Primer ID sequence library of approximately
65,000 sequences. These limitations on template number are alle-
viated as the length of the Primer ID is extended beyond the 8-nu-
cleotide length used in this simulation. Also, after removing the
reads from offspring Primer IDs and limiting the resampling of
Primer IDs by matching template number with Primer ID length,
�90% of the raw reads are still available to use in alignments for
creating consensus sequences to reduce method-introduced error.

Reduction in PCR and NGS error rate using Primer ID. We
sought an approach to make a direct measurement of the residual
reverse transcriptase (RT) PCR/sequencing error rate after cor-
recting errors by creating a consensus sequence. We used the 8E5
clonal cell line which produces HIV-1 particles that are defective
for replication and spread (9). Table 3 shows the error rate of
template consensus sequences estimated using as the template vi-
rion RNA produced by the 8E5 cell line and testing different RT
and PCR DNA polymerase pairs. The env V1 to V3 libraries were
designed for paired-end sequencing but without overlap. We es-
timated the error rate for the sequencing of these two regions
separately. For the protease sequence libraries there were 181 bp of
sequencing overlap between end/region 1 (R1) and end/region 2
(R2). In an additional analyses we discarded sequences with dis-
crepancies within the overlap region to build a combined consen-
sus sequence. The error rate was estimated for the two regions
separately and for the combined sequences.

We obtained between approximately 15,000 to 23,000 tem-
plate consensus sequences for each region/enzyme set combined
by pooling the data from the two reactions. We observed that
there were more (but still at a low level) mispriming events seen in
all of the data sets using Superscript III than when using Accu-
Script reverse transcriptase. In the data sets, �1% of the consensus
sequences had frameshifts, which we were able to discard in the
analysis since they would be nonfunctional as coding domains. A
small number of sequences had in-frame deletions from the V1 to
the V3 region, and these were not included when estimating the
substitution error rate. The substitution error rates for sequencing
the V1/V2 region were between 0.002 to 0.004% for the three sets
of enzymes. However, we noticed that a significant number of
substitutions for reads at the C2/V3 end were clustered at the first
nucleotide and last 2 nucleotides of C2/V3 consensus sequences,

TABLE 2 Average number of raw sequences per consensus Primer ID as input template varies for a fixed number of raw readsa

No. of RNA
templatesb

No. of template
consensus reads

Avg no. of raw sequences per consensus Primer ID (SD)c

Observed Model 1 Model 2 Model 3

370 102 2,756 (2,114) 2,703 (53) 2,497 (45) 2,712 (1,631)
1,111 423 662 (418) 901 (30) 832 (29) 834 (470)
3,333 1,126 247 (124) 302 (29) 278 (25) 284 (161)
10,000 2,911 90 (41) 102 (18) 94 (16) 96 (55)
a This analysis used 300,000 quality raw sequences.
b A 30% conversion rate of RNA templates to cDNA templates was applied in the simulation models.
c Observed, observed data from the serial dilution experiment; model 1, no PCR bias, no error in the Primer ID region; model 2, no PCR bias, error rate in the Primer ID region �
0.01; model 3, PCR bias (first 10 cycles of PCR, only 50% of templates were used), error rate in the Primer ID region � 0.01.
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which could be caused by mis-priming. After these three positions
were removed from the analysis, we found that the substitution
rates for sets 1 and 2 at the C2/V3 regions were 0.009 and 0.005%,
respectively. The substitution rate remained the same for set 3 at
0.008%. The protease R1 and R2 regions had substitution rates of
0.011 and 0.013%, respectively. The substitution rates were con-
sistent between each pair of repeats, and the rate was not lower
when we used the overlap region for further correction, indicating
that the use of PCR resampling identified by Primer ID to create a

consensus sequence was sufficient to remove virtually all of the
PCR and sequencing errors. Overall, an error rate of 0.01% (1 in
10,000 nucleotides sequenced) represents an approximate esti-
mate of the error rate using Primer ID and virion RNA, being the
result of the combined error rate of host RNA synthesis and cDNA
synthesis using RT in vitro. Transitions were the major type of
substitution, representing ca. 80% of the substitutions, with A-
to-G substitutions being the most common; A-to-T and T-to-A
substitutions were the most common transversion substitutions

FIG 8 Patterns of Primer ID resampling and template coverage. (a) Relationship between the number of raw sequences and Primer ID resampling (i.e., the
percentage of template consensus sequences from more than one template in all of the template consensus sequences recovered) at different levels of converted
templates. (b) Relationship between the number of raw sequences and template recovery at different levels of converted templates.
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as assessed in the coding strand (data not shown). In addition, the
observed error distribution was comparable to the distribution
predicted using the Poisson distribution given the measured error
rate from each region (Table 4).

Using this measured method-induced error rate (0.01%) and
the Poisson distribution, the expected number of random errors
can be calculated and used to define cutoffs for detecting muta-
tions at low abundance. We constructed a protease sequence data
set for a sample from a protease inhibitor-treatment naive subject.
We obtained a total of 3,178 consensus sequences, and the se-
quenced region was 340 nucleotides in length. Table 5 shows the
expected distribution of random errors based on the residual error
rate and the observed distribution of variants. Based on this mea-
sured error rate, we were not able to distinguish positions with one
or two mutations as being more abundant than random errors
from the method. However, positions with more than two muta-
tions (�0.06% abundance) were likely to be real sequence variants
within the viral sequence population. We further searched the

template consensus sequences for protease surveillance drug re-
sistance mutations (18). With the cutoff defined above, M46I
(0.16%), M46L (0.09%), and I47V (0.13%) were detected at low
abundance in the pretherapy viral population present in this
plasma sample (Table 6). In addition, we calculated the exact
Clopper-Pearson binomial confidence interval (19) for the true
abundance of each minority mutation. We can also estimate the
probability of detecting a true mutation at a certain abundance
based on the Poisson distribution. In this example, we have a 95%
chance of detecting a variant in the data set if the true abundance
is �0.2% given a sampling of 3,178 template sequences.

DISCUSSION
Advances in the Primer ID approach compared to previous
studies. The technology of using a degenerate block of nucleotides
as indexing tags for NGS has been introduced in both DNA tem-
plate sequencing (20) and RNA virus sequencing (6, 21). How-
ever, adoption of this technology has been slowed by several con-

TABLE 3 Summary of the measured error rates determined for the sequencing of the 8E5 HIV-1 RNA controls

Control variablea

Error rateb

env (set 1) env (set 2) env (set 3) Protease (set 1)

V1/V2 C2/V3 V1/V2 C2/V3 V1/V2 C2/V3 R1 R2 combined

Consensus sequences (no.) 23,385 23,385 18,408 18,408 15,205 15,205 14,778 14,778 14,741
Mispriming (no.) 6 41 8 40 4 5 8 15 7
In-frame deletions (no.) 5 12 0 8 1 2 0 0 0
Frameshift (no.) 138 134 151 87 184 25 43 42 55
Consensus sequences (no. without

in/del)
23,236 23,198 18,249 18,273 15,016 15,173 14,727 14,721 14,679

Length (no. of nucleotides) 265 256 265 256 265 256 265 256 340
Substitutions (no.) 206 748 73 412 158 311 426 488 565
Substitution rate (%) 0.003 0.013 0.002 0.009 0.004 0.008 0.011 0.013 0.011
Substitutions (%; excluding first and last

two positions)
0.009 0.005 0.008

a For the number of consensus sequences, the template consensus sequences were pooled from two repeats of library construction and sequencing for each enzyme/region.
Mispriming was defined as sequence reads at regions other than the targeted regions. An in-frame deletion was defined as a deletion that could be evenly divided by 3. A frameshift
was defined as a deletion that could not be evenly divided by 3. Length was defined as the nucleotide size of the sequenced regions. in/del, insertions and/or deletions.
b Set 1, Superscript III as the reverse transcriptase and KAPA2G robust as the first-round PCR polymerase; set 2, Supperscript III as the reverse transcriptase and Phusion as the
first-round PCR polymerase; set 3, AccuScript as the reverse transcriptase and KAPA2G robust as the first-round PCR polymerase.

TABLE 4 Poisson distribution of expected substitutions and observed substitutions per position from sequencing the 8E5 viral RNA control
samplesa

No. of substitutions
per position

RSB14 R1 V1/V2 region (265 bp)b RSB14 R2 C2/V3 region (253 bp)c

No. of positions
from the Poisson
distribution

No. of positions
observed

No. of positions
from the Poisson
distribution

No. of
positions observed

0 166 169 89 95
1 78 75 93 89
2 18 18 49 42
3 3 1 17 20
4 0 1 4 5
5 0 0 1 1
6 0 1 0 0
7 0 0 0 1
a The total number of consensus sequences was 13,471. The first and last two bases of the C2/V3 region were excluded from this analysis.
b The total observed errors were 124 for the V1/V2 region. The Poisson distribution was calculated based on the observed error rate, which for this experiment was measured at
0.003%.
c The total observed errors were 265 for the C2/V3 region. The Poisson distribution was calculated based on the observed error rate, which for this experiment was measured at
0.008%.
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cerns. The cause of the wide distribution of Primer ID reads in the
raw sequencing reads (Fig. 1) was unclear when this technology
was first introduced. In addition, there is a concern that the ran-
dom tags could anneal to the template and through this or other
mechanisms induce PCR amplification skewing. Conversely, dis-
carding low-abundance tags may cause a bias in interpreting al-
lelic frequency (8, 22).

There are several major differences between our study and pre-
vious studies on the use and interpretation of a Primer ID se-
quence block (6, 8, 20). First, few of the pipelines in the previous
studies considered offspring effects of sequencing/PCR errors
within the Primer ID region, although this issue was recently ad-
dressed by Brodin et al. (23). We have demonstrated that Primer
IDs at low abundance are related to abundantly read Primer IDs,
but using a sliding cutoff model we observed the expected strong
linear correlation between the number of template consensus se-
quences and the input template number (Fig. 5). Using a fixed
cutoff can retain a large proportion of offspring sequences, intro-
ducing skewing from rerepresentation of templates with the abun-
dant Primer ID reads as the apparent templates of offspring
Primer IDs. Second, previous studies used the Roche 454 plat-
form, which has a much lower throughput compared to the MiSeq
platform used in the present study (21, 24, 25), which, along with
the Ion Torrent platform, has a high error rate at homopolymer
runs (26, 27) that is not a feature of MiSeq platform. When the
number of raw sequence reads per template is not sufficient (due
either to low capacity or too much multiplexing), the peak of the
Primer ID read distribution will be shifted toward the low-abun-
dance error end, making template recovery significantly less than
optimal (Fig. 8a), and Primer ID resampling will be more likely to
be included (Fig. 8b). Thus, we conclude that using certain plat-
forms and not addressing and discarding offspring Primer IDs in
the bioinformatics pipeline significantly compromises the impor-
tant advantages gained in using the Primer ID strategy. In this
regard we found that 30-fold coverage per converted template
provides sufficient depth for creating a consensus sequence and
allows �90% of the converted templates to be detected in the
sequence output.

Advantages of the improved Primer ID approach compared
to conventional NGS. Our improved Primer ID approach has
several advantages compared to conventional NGS in viral popu-
lation studies. The Primer ID approach provides information
about initial template sampling, providing the denominator in
estimating relative abundance. A standard approach to sequenc-

ing viral RNA is to randomly fragment larger PCR amplicons be-
fore sequencing and align the sequencing reads with a template
sequence (28). With this approach it is difficult to do linkage anal-
ysis (due to PCR recombination and the fragmentation) and esti-
mate allelic frequencies (due to PCR amplification skewing, PCR
resampling, and PCR and sequencing errors). Here, we show it is
possible to construct the MiSeq library directly from the cDNA
synthesis product and two rounds of PCR without fragmentation,
which provides the opportunity to look at mutation linkages and
recombination within the viral population.

A common approach to analyzing population diversity with
NGS data is to set an arbitrary cutoff describing polymorphisms at
a frequency of 1% or more (29–31). Such an approach assumes
that the number of templates queried is well in excess of 100,
which can be problematic when only small amounts of a clinical
sample are available that are often of unknown viral RNA concen-
tration and/or quality. Given the sensitivity of PCR, amplicons
can routinely be generated with fewer than 100 copies of starting
template, making an observation of 1% abundance meaningless in
the absence of some knowledge of the number of templates que-
ried. At the other extreme, there may be excess templates con-
verted well beyond 100 to make the estimate of 1% accurate, but in
this case much of the power of NGS is lost due to the fact that the
detection of minor variants could be validated well beyond 1%.
Similarly, the inability to use PCR resampling to correct sequenc-
ing errors confounds the interpretation of polymorphisms, espe-
cially in the case where small template numbers are inadvertently
used; for example, an early error during the PCR would be repre-
sented in a significant fraction of the population, or stochastic
sampling of the starting templates could over- or under-represent
the true abundance of a variant.

Strategy for designing NGS using Primer ID. The simulations
and experiments in the present study provide a strategy for design-
ing NGS using Primer ID. As seen in Fig. 8, the key of designing a
proper Primer ID sequencing run is to have good template recov-
ery. A typical design would be to have a Primer ID length of 8
nucleotides, with 15,000 RNA templates in a sample with an ex-
pectation of 20% conversion to final sequences (i.e., 3,000 tem-
plates queried), allocating 30 resampling reads on average per
template (i.e., about 90,000 reads per sample), and then having
bar codes to allow multiplexing of different samples up to the
capacity of the instrument for the number of reads that can be
obtained. In this design the recovery of converted templates is
high (with 30-fold coverage of quality raw reads), while the num-

TABLE 6 Protease surveillance drug-resistant mutations observeda

Codon Wild type Mutation No. (%) of variantsb 95% CIc

46 M (ATG) I (ATA) 5 (0.16) 0.05–0.37
46 M (ATG) L (TTG) 3 (0.09) 0.02–0.28
47 I (ATA) V (GTA) 4 (0.13) 0.03–0.32
82 V (GTC) A (GGC) 1 (0.03)
83 N (AAC) D (GAC) 1 (0.03)
84 I (ATA) V (GTA) 1 (0.03)
85 I (ATT) V (GTT) 1 (0.03)
88 N (AAT) D (GTA) 2 (0.06)
a Mutations with an abundance greater than the error cutoff are shaded.
b The total number of template consensus sequences was 3,178.
c Each 95% confidence interval (CI) for the true abundance was calculated using the
Clopper-Pearson method.

TABLE 5 Use of the estimated error rate and the Poisson distribution of
errors to make cutoffs for low-abundance mutations in the HIV-1
protease regiona

No. of mutations
per position

No. of positions
from the Poisson
distribution (errors)

No. of positions
observed

1 79 68
2 12 35
3 1 20
4 0 13
�5 0 92
a From a protease inhibitor treatment-naive patient sample. The number of consensus
sequences was 3,178. The estimated substitution rate was 0.01%. The length of the
sequences was 340 bp.
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ber of templates lost to Primer ID resampling is low. The length of
the Primer ID determines the number of possible Primer IDs in
the cDNA primer library, and it can be lengthened if the number
of templates to be sequenced is larger to reduce Primer ID resam-
pling. The Primer ID read number cutoff can be set only after an
analysis of the number of reads per template since the cutoff
would be relatively low if template utilization were efficient in this
design but would be high if template recovery were low, resulting
in coverage much greater than 30-fold. Finally, the formation of
offspring Primer IDs is not corrected by creating consensus se-
quences from the resampling; thus, it is directly influenced by the
error rate of the platform. The model used to create the cutoff to
avoid offspring Primer IDs may therefore vary depending on the
sequencing platform.

Meaning of a measured error rate and use of the Poisson dis-
tribution. The 8E5 cell line provides a largely homogenous source
of viral RNA templates. The uncorrected error rate is from a com-
bination of human RNA polymerase II errors during the synthesis
of viral RNA in the cell, reverse transcriptase errors in the cDNA
reaction, PCR errors, and sequencing errors. The corrected error
rate, which we could measure directly, was reduced to around 1 in
10,000 nucleotides using the Primer ID approach, close to the
reported error rate for reverse transcriptase in an enzyme reaction
(32, 33), which cannot be corrected by the Primer ID approach.
Using the measured error rate and the Poisson distribution, we
can now identify cutoffs for predicting the number of error-intro-
duced minority variants in the final consensus sequence data set of
individual genomes that were sequenced. This approach allows
the power of NGS capacity to be applied with much greater accu-
racy to the question of variants present at low abundance while
avoiding the use of indirect methods/models to try to account for
inferred errors.
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