138 research outputs found

    Synthesis and Biological Evaluation of Ezetimibe Analogs as Possible Cholesterol Absorption Inhibitors

    Get PDF
    In order to investigate the SAR of Ezetimibe analogs for cholesterol absorption inhibitions, amide group and electron-deficient pyridine ring were introduced to the C-(3) carbon chain of Ezetimibe. Eight new derivatives of the 2-azetidinone cholesterol absorption inhibitors have been synthesized, and all of them were enantiomerically pure. All the new compounds were evaluated for their activity to inhibit cholesterol absorption in hamsters, and most of them showed comparable effects in lowering the levels of total cholesterol in the serum

    Patterns and driving forces of dimensionality-dependent charge density waves in 2H-type transition metal dichalcogenides

    Full text link
    Two-dimensional (2D) materials have become a fertile playground for the exploration and manipulation of novel collective electronic states. Recent experiments have unveiled a variety of robust 2D orders in highly-crystalline materials ranging from magnetism to ferroelectricity and from superconductivity to charge density wave (CDW) instability. The latter, in particular, appears in diverse patterns even within the same family of materials with isoelectronic species. Furthermore, how they evolve with dimensionality has so far remained elusive. Here we propose a general framework that provides a unfied picture of CDW ordering in the 2H polytype of four isoelectronic transition metal dichalcogenides 2H-MX2_2 (M=Nb, Ta and X=S, Se). We first show experimentally that whilst NbSe2_2 exhibits a strongly enhanced CDW order in the 2D limit, the opposite trend exists for TaSe2_2 and TaS2_2, with CDW being entirely absent in NbS2_2 from its bulk to the monolayer. Such distinct behaviours are then demonstrated to be the result of a subtle, yet profound, competition between three factors: ionic charge transfer, electron-phonon coupling, and the spreading extension of the electronic wave functions. Despite its simplicity, our approach can, in essence, be applied to other quasi-2D materials to account for their CDW response at different thicknesses, thereby shedding new light on this intriguing quantum phenomenon and its underlying mechanisms

    Sintering of Iron Ores in a Millipot in Comparison with Tablet Testing and Industrial Process

    Get PDF
    To explore the feasibility of small-scale sintering pot testing, a \u27millipot\u27 facility (diameter of 53 mm and height of 400 mm) was established and used to examine the sintering performance of iron ores and other non-traditional ferrous materials. The sintering performance of a millipot was examined across a range of different operational conditions (coke rate and suction pressure) and compared with an industrial sinter strand operation. Tablet tests were also performed to assist in the design of the millipot experiments and identify conditions for achieving mineral composition similar to the industrial sinter. For the millipot experiments, the materials used need to be compacted to increase the bulk density, and a higher coke rate is required to compensate the high heat loss caused by wall effects. A higher suction pressure is also necessary to maintain an oxidizing atmosphere in the sinter bed. As expected, it was not possible to eliminate the wall effect, which resulted in more primary hematite at edges of the sintered column. However, the sintered material from the center of column simulates industrial sinter reasonably well. As such, millipot provides a practical way to evaluate the sintering process and material performance at laboratory scale, helping to bridge the gap between tablet sintering and large scale pot sintering, or full scale plant trial. The results of millipot testing can be used for designing larger scale experiments or commercial sintering trials

    The continuing evolution of Energy Policy

    Get PDF
    As the world confronts the Covid-19 pandemic, we hope that all of you are doing well. We know that many lives have been greatly disrupted, and that world economic activity is slowing and maybe declining in some places. We have read reports that energy consumption has been greatly affected by the slowdown in world economic activity—likely contributing to the sharp plunge in oil prices earlier this year. We do not know how long this pandemic may last. As we look forward to the end of the pandemic and a recovering world economy, however, we wonder if and how energy systems may have to be transformed, and whether new energy policy needs and approaches will emerge. Will we see any change in the trajectory of adopting sustainable energy systems and reducing carbon emissions?In the academic world, many of us are now teleworking and teaching our courses online. This transition has proved time consuming—so we want to thank our many reviewers who are staying on or close to schedule. So far, Energy Policy has been mostly unaffected by the pandemic, but we must recognize that the Elsevier employees who are responsible for the operations side of the journal may at some time be affected by Covid-19.In the meantime, we want to keep you informed about some recent developments regarding Energy Policy, including a little about its history and our editorial priorities

    Negative flat band magnetism in a spin-orbit coupled correlated kagome magnet

    Full text link
    It has long been speculated that electronic flat band systems can be a fertile ground for hosting novel emergent phenomena including unconventional magnetism and superconductivity. Although flat bands are known to exist in a few systems such as heavy fermion materials and twisted bilayer graphene, their microscopic roles and underlying mechanisms in generating emergent behavior remain elusive. Here we use scanning tunneling microscopy to elucidate the atomically resolved electronic states and their magnetic response in the kagome magnet Co3Sn2S2. We observe a pronounced peak at the Fermi level, which is identified to arise from the kinetically frustrated kagome flat band. Increasing magnetic field up to +-8T, this state exhibits an anomalous magnetization-polarized Zeeman shift, dominated by an orbital moment in opposite to the field direction. Such negative magnetism can be understood as spin-orbit coupling induced quantum phase effects tied to non-trivial flat band systems. We image the flat band peak, resolve the associated negative magnetism, and provide its connection to the Berry curvature field, showing that Co3Sn2S2 is a rare example of kagome magnet where the low energy physics can be dominated by the spin-orbit coupled flat band. Our methodology of probing band-resolved ordering phenomena such as spin-orbit magnetism can also be applied in future experiments to elucidate other exotic phenomena including flat band superconductivity and anomalous quantum transport.Comment: Nature Physics onlin
    • …
    corecore