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Abstract 10 

To explore the feasibility of small-scale sintering pot testing, a ‘millipot’ facility (diameter of 11 

53 mm and height of 400 mm) was established and used to examine the sintering 12 

performance of iron ores and other non-traditional ferrous materials. The sintering 13 

performance of a millipot was examined across a range of different operational conditions 14 

(coke rate and suction pressure) and compared with an industrial sinter strand operation. 15 

Tablet tests were also performed to assist in the design of the millipot experiments and 16 

identify conditions for achieving mineral composition similar to the industrial sinter. For the 17 

millipot experiments, the materials used need to be compacted to increase the bulk density, 18 

and a higher coke rate is required to compensate the high heat loss caused by wall effects. A 19 

higher suction pressure is also necessary to maintain an oxidizing atmosphere in the sinter 20 

bed. As expected, it was not possible to eliminate the wall effect, which resulted in more 21 

primary hematite at edges of the sintered column. However, the sintered material from the 22 

centre of column simulates industrial sinter reasonably well. As such, millipot provides a 23 

practical way to evaluate the sintering process and material performance at laboratory scale, 24 

helping to bridge the gap between tablet sintering and large scale pot sintering, or full scale 25 

plant trial. The results of millipot testing can be used for designing larger scale experiments 26 

or commercial sintering trials.  27 

KEY WORDS: sintering of iron ores, tablet testing, millipot, industrial sinter, mineral 28 

composition of sinter, microstructure of sinter   29 
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1. Introduction 30 

At present, sinter is the major ferrous burden material used in the blast furnace (BF) for the 31 

production of hot metal, which accounts for about 70% of the world’s steel production 32 

annually. [1, 2] However, with ever changing ore costs and specifications, steelmakers are 33 

increasingly motivated to use iron ore resources with a wider range of grades and mineral 34 

types previously considered unsuitable or uneconomical for sintering, as well as other iron-35 

bearing materials such as plant by-products. This means that new issues requiring further 36 

investigation and understanding continue to arise, including the sintering of ore types with a) 37 

overall higher gangue content, b) elements that cause problems in the steel manufacturing 38 

operations, and c) distinctive sintering performance compared with traditional hematite-rich 39 

iron ores.  40 

Laboratory-based investigation of the sintering performance and the behaviour of the gangue 41 

components during sintering is an important step towards the successful utilization of these 42 

resources in steelmaking. In terms of laboratory-based sintering investigations, there are two 43 

generally accepted experimental scales utilized prior to industrial-scale trials being 44 

undertaken, viz. bench-scale tablet (compact) testing [3-7], and pilot-scale pot testing [2, 8-45 

12]. The former has the advantages of flexibility and more precise control of sintering 46 

conditions, but the effects of particle size and heterogeneity of the blend are neglected. The 47 

latter, which is carried out in pots with diameters between 150~500 mm, simulates the 48 

industrial sintering process and conditions, producing product sinter suitable for standard 49 

testing regimes, but is time consuming and labor-intensive. It is therefore desirable to develop 50 

a smaller scale pot testing facility, a “millipot”, which avoids the above disadvantages of a 51 

large sinter pot but  still provides industrially relevant information.  52 

Neither bench- nor pilot-scale can fully simulate the industrial sintering process. In order to 53 

obtain better simulation performance, especially in the formation of mineral phases during 54 
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high temperature sintering, the selection of the operating parameters in bench- and pilot-scale 55 

testing is crucial. In previous tablet testing investigations, an oxygen partial pressure of 0.5 56 

kPa and 4 minutes sintering at target temperatures were used to simulate the local atmosphere 57 

in the sintering hot zone. [6, 7] In sinter pot testing, parameters, such as bulk density of sinter 58 

bed, suction pressures during ignition and sintering, and ignition time were considered. [2, 59 

12, 13] In this work, the parameters of millipot runs were adjusted on the basis of the 60 

previous investigations to get better sintering performance. The  mineral composition of the 61 

sinter samples from the millipot was investigated at different coke rates and compared with 62 

an industrial sinter obtained from the same green feed. Corresponding sintering conditions to 63 

generate similar mineral phases in tablet testing were also explored. The objectives were to 64 

develop a fundamental understanding of the microtextural characteristics at three scales 65 

(tablet, millipot and industrial) and to demonstrate the suitability and application of the 66 

millipot set-up to simulation of the industrial sintering process.  67 

2. Experimental 68 

2.1 Sintering Feed Materials 69 

As one of the objectives of the present work was to closely simulate industrial sintering 70 

conditions, green feed from the exit of the granulation drum at BlueScope’s Port Kembla 71 

Sinter Plant was used as the base feed for the millipot experiments. The components of the 72 

base green feed were (wet-wt%-green feed basis at a total free moisture content of 6%):  73 

• Iron ores (Ores 1 to 5): 45.7, 1.82, 1.51, 1.69 and 8.31 wt%, respectively.  74 

• Manganese ore, ferrous recycles, metallic recycles and returned fines: 0.34, 4.70, 3.23 75 

and 15.65 wt%, respectively.  76 

• Limestone and dolomite: 10.62 and 2.28 wt%, respectively.  77 
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• Coke: 4.17 wt%.  78 

The mixed green feed was sampled and then stored in sealed plastic bags to prevent loss of 79 

moisture. To determine its particle size distribution, a sub-sample was dried and sieved, 80 

resulting in a distribution (wt%) of: +0-2mm 37%, +2-4mm 29%, +4-6.3mm 19%, +6.3-8mm 81 

6%, +8-10mm 4% and +10mm 5%. 82 

Due to the small diameter of the millipot, large particles have a disproportionate effect on the 83 

local sintering conditions. [11] To mitigate this, the feed was sieved with the +6.3 mm 84 

fraction being jaw crushed and recombined before manual regranulation in a laboratory drum 85 

to ensure the final green feed had a top size less than 6.3 mm. The indicative green feed 86 

composition was (wt% dry basis, including all components in the blend): total Fe 47.8 (1.76 87 

FeO), SiO2 5.56, Al2O3 1.51, CaO 8.71, MgO 1.01 and carbon 3.99 yielding a basicity 88 

(CaO/SiO2 weight ratio) of 1.57. 89 

The coke rate was defined as follows: 90 

Coke rate (CR) =
𝑚(coke)

𝑚(green feed)
100%                                                                   (1) 91 

where m(coke) denotes the mass of coke and m(green feed) the mass of green feed including 92 

coke, both on a dry basis. 93 

For tablet experiments, an equivalent blend comprising the ore and flux components (coke 94 

and recycles were not included) was sourced from the plant raw material stockpiles, with 95 

each raw material component ground to < 200 µm. These materials were then mixed in the 96 

proportion corresponding to that of the industrial sinter plant and mixed thoroughly to ensure 97 

homogeneity.  98 
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2.2 Sintering Equipment 99 

Figure 1(a) shows a schematic of the millipot: it consists of an insulated sinter tube (pot), air 100 

suction and waste gas treatment components, and a process monitoring and control system. 101 

The sintering tube is a stainless-steel column (53 mm internal diameter, 490 mm high) 102 

surrounded by 50 mm of thermal insulation material. Six ports on the side of the column 103 

allow for insertion of thermocouples to monitor the sintering temperature, or connection with 104 

a differential pressure transducer for pressure drop measurement. Two extra ports are 105 

available at the bottom extended section (T7) for the measurement of off-gas temperature and 106 

the pressure drop across the sinter bed. The sintering process is initiated using an LPG burner 107 

located at the top of the millipot. The air suction system includes a water ring vacuum pump 108 

and a buffer container or windbox to stabilize the system suction pressure. The windbox is 109 

half filled with water so that the flue gas generated during sintering can be cooled and 110 

cleaned before passing through the suction pump. The suction pressure can be controlled 111 

using a bypass valve on the windbox providing additional dilution air, i.e. without flowing 112 

through the sinter pot.  113 

The process monitoring system measures the sintering temperature and pressure drop within 114 

the sinter pot. The temperatures at different locations of the sinter pot are monitored using 115 

bare Type K thermocouples connected to a Thermocouple C Series Module (Model NI 9212, 116 

National Instruments). Bare thermocouples were used to increase the sensitivity and accuracy 117 

of the measurement. The suction pressure is monitored using a differential pressure 118 

transducer (26PC series, Honeywell, supplied by RS Australia) with one side connected to 119 

port P and the other to ambient. All of the temperature and pressure data are logged using a 120 

computer with LabVIEW software (version 2013.0.1, National Instruments). 121 
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  122 

Figure 1. Schematics of laboratory sintering set-ups: (a) Millipot; (b) vertical electrical 123 

furnace. 124 

The tablet sintering experiments were carried out using a vertical electric heating tube 125 

furnace as presented in Figure 1(b). Tablets were loaded into a steel wire basket and located 126 

in the furnace hot zone. The oxygen partial pressure was adjusted by mixing air and nitrogen, 127 

with flow rates controlled via mass flow controllers. The parameters of individual 128 

experiments are covered in the Results and Discussion section.  129 

2.3 Sintering Procedures  130 

For the millipot testing, the green feed was added to the stainless steel column in 131 

approximately 120g aliquots and compacted with a rod after each aliquot was added. 132 

Thermocouples were placed in the corresponding port as filling approached the level of each 133 

port. Sintering was initiated by adjusting suction pressure to 5.3 kPa and then placing the 134 

burner over the top of the bed for 90 s. The burner was then removed and the suction pressure 135 

increased to 10.6 kPa, matching the pressure gradient used by Lu. [2, 13] After the flame 136 

front had passed through the bed, suction was continued until the flue-gas temperature cooled 137 

to 80 °C, following which the pump was turned off and the sinter pot unloaded. Sintered 138 
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lump products excluding the wall area were collected for analysis. A more detailed procedure 139 

for the millipot operation is reported elsewhere. [12] 140 

Flame front speed (FFS) is an important operational parameter for sintering. In this 141 

investigation, the FFS is defined as follows: 142 

FFS =
𝐵𝑒𝑑 ℎ𝑒𝑖𝑔ℎ𝑡

𝑆𝑖𝑛𝑡𝑒𝑟𝑖𝑛𝑔 𝑡𝑖𝑚𝑒
                                                                   (2) 143 

It is calculated using the distance between ports 1 and 6 (bed height) divided by the time 144 

difference at which the peak temperatures were reached at the two ports (sintering time).   145 

For the tablet experiments, cylindrical tablets of 6 mm diameter and ~5 mm height were 146 

prepared. An equivalent tablet blend was prepared from individual ores and fluxes (without 147 

coke and recycles) in the normalised proportions present in the plant green feed. The tablet 148 

blend was ground in a ring mill to less than 200 µm and pressed at 48.8 MPa to form each 149 

tablet. The tablets were loaded into the reaction basket and placed at the top (cold) end of the 150 

furnace tube. The furnace was preheated to the desired temperature and flushed with the gas 151 

mixture (𝑃𝑂2
= 0.5 kPa) for at least 15 minutes; the basket was lowered to the hot zone and the 152 

tablet sintered for 4 minutes with gas flow of 1 NL/min (linear speed: 0.45 m/min). [6] 153 

Adopting the methodology of Wang et al. [7], two cooling procedures were employed: a) 154 

directly lifting the basket to the cold end of the furnace tube and simultaneously switching the 155 

sintering gas atmosphere to ambient air; b) soaking at the sintering temperature or 1250 °C, 156 

whichever was lower, in air of 6 NL/min for 3 minutes, then lifting the basket to the top end 157 

of the furnace tube. All the temperatures were pre-calibrated by lowering a type R 158 

thermocouple into the empty hot zone of the furnace with the same gas flow. 159 

The overall oxygen partial pressure in the exhaust gas of a sinter strand is high. However, due 160 

to the non-uniform gas flow, , and the progression of the flame front, the oxygen partial 161 

pressure in a sinter bed is dynamic and non-uniform over a large range (0-21%). In a local 162 
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area where the gas flow is weak and oxygen is consumed by the combustion of coke, the 163 

oxygen partial pressure can be very low. In previous investigations it was shown that 0.5% 164 

O2 partial pressure was a representative value for the formation of mineral phases during high 165 

temperature sintering, and was determined for tablet sintering conditions to produce similar 166 

overall microstructures. [6, 7] This O2 partial pressure value was therefore used in this 167 

investigation in assessing mineral composition effect in tablet sintering. 168 

2.4 Characterization Methods 169 

The sintered tablets and lump sinter samples were mounted in epoxy resin in preparation for 170 

optical and SEM-EDS analysis. After curing, the surface was ground and polished to a 1 μm 171 

finish for optical microscopic observation (Leica DM6000 Optical Microscope). The polished 172 

sample was then platinum coated and analyzed by scanning electron microscopy (JEOL JSM 173 

– 6490LV) operated at 15 kV.  174 

The mineral phase compositions of the industrial sinter samples were determined by point 175 

counting (Olympus Vannox optical microscope) and the millipot samples by image analysis. 176 

In both cases, the samples were crushed to less than 1.7 mm, and then 32 g of representative 177 

samples were mounted in epoxy resin. After curing, the cylindrical samples were cut along 178 

the axial direction and polished to a 1 μm finish. Optical images for image analysis were 179 

taken by Leica DM6000 Optical Microscope and analyzed by Leica application Suite V4.0.  180 

3. Results and Discussion 181 

3.1 Industrial Sintering Conditions and Sinter Properties 182 

Sinter quality metrics such as reducibility and mechanical strength affect BF productivity – in 183 

turn, sinter quality is governed by its microstructure. Sinter microstructure requires 184 

characterization in terms of chemical composition, mineralogy, and morphology of the 185 

presenting phases.  186 
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Figure 2 shows optical images of an industrial sinter sample of the same blend. During 187 

production of that sinter, the bulk density of green feed was 1770 kg/m3 and FFS was 13.6 188 

mm/minute. Silico-ferrites of calcium and aluminum, SFCA and SFCA-I, are typically the 189 

major and most desirable bonding phases because of their high reducibility and good 190 

mechanical strength. [14-19] Moreover, the SFCA phases are considered the most important 191 

phases for producing high quality sinter at low temperatures and high productivity. [20-23] 192 

Secondary hematite and magnetite are the second group of major constituents in the bonding 193 

phases which are formed in more oxidizing or reducing atmospheres, respectively, and 194 

crystallized from the melt. Additionally, some relict regions (quartz and primary hematite 195 

derived from goethite ore) retain their original contours and show a reaction halo with the 196 

surrounding melt, Figure 2e.  197 

 198 
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Figure 2. Optical images of industrial sinter. Q: quartz; PH: primary hematite; SH: secondary 199 

hematite; M: magnetite; S: silicate; SFCA: platy shape of silico-ferrite of calcium and 200 

aluminum; SFCA-I: acicular shape of silico-ferrite of calcium and aluminum. 201 

Figure 2 shows that individual particles of the industrial sinter sample, and also different 202 

regions within those particles have distinctive morphologies and mineral compositions. It is 203 

understood that the differences were caused by the changes of the sintering conditions at 204 

different locations of the sintering bed due to local non-uniformity of the blend composition, 205 

loading density, gas flow, etc., which caused differences in the maximum temperatures reached 206 

and oxygen partial pressure at different locations. However, it was the general morphology and, 207 

specifically, the overall mineral phase composition of the industrial sinter that was targeted for 208 

the millipot sinter product.  209 

3.2 Sintering Performance of Millipot 210 

In this millpot study, the material being sintered was derived directly from sinter plant green 211 

feed, with adjustment of coke rate being made to achieve reasonably close correspondence of 212 

sintering conditions to those in the full-scale plant. The feed preparation and experimental 213 

procedures for the millipot were adjusted by comparison to the sintering performance of the 214 

industrial process, as summarized below. 215 

An initial set of experiments were carried out to investigate the effect of coke rate and 216 

determine an appropriate level for the millipot runs with no initial compaction of the green 217 

bed. [12] However, without compaction, the FFS was significantly higher than in the 218 

industrial sinter strand, 18~24 cf. ~14 mm/min, and approximately half of the sintered 219 

material was in the form of fines (<3.35mm), i.e. insufficient melting phase was formed to 220 

bond materials together. Furthermore, the bulk density of green feed without compaction was 221 
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~1650 kg/m3, which was lower than an optimum level of ~1800 kg/m3 [2] - this resulted in a 222 

high sinter bed permeability and ultimately high FFS, high heat loss and low melt formation.  223 

To increase the density, uniformity and controllability of pot filling, and to decrease the FFS 224 

during sintering, a compaction rod with a 50 mm diameter disk (weight = 1327 g) at the base 225 

was used. The green feed was loaded into the column in 120 g increments (out of a total 226 

charge of 1750 g). After each 120 g increment, the compaction rod was gently placed on the 227 

surface, lifted 100 mm and then released. This process was repeated until the column was 228 

filled to the top giving an initial bed height of 400 mm. Figure 3 presents the relationship 229 

between the loaded weight and the bed height, and corresponding average bulk density at 230 

different loading heights. Using the compaction rod, the bulk density of the sinter bed 231 

attained ~1880 kg/m3. There was a slight difference between the bottom and top of the bed 232 

and the trend was repeatable.  233 

 234 

Figure 3. The changes of the bed height and average bulk density with the loaded weight. The 235 

bed height lines overlap. 236 

The effect of coke rate on the sintering performance is presented in Table 1. With 237 

compaction, the average bulk density ranged between 1870-1880 kg/m3. The FFS at different 238 

coke rates was reasonably consistent, i.e. ~16 mm/minute. Except for the test with a low coke 239 



13 
 

rate of 5.0%, all of the tests were well sintered, with less than 15% of fines smaller than 3.35 240 

mm in the whole sinter product.  241 

Table 1. Effects of coke rate and suction pressure gradient on the sintering performance of 242 

iron ores 243 

Test 

No. 

Coke 

rate, % 

Suction pressure  Bulk 

density, 

kg/m3 

FFS, 

mm/min 

Fraction of 

fines <3.35 

mm, % 

Temperature 

profile 
Ignition Sintering 

kPa  kPa/m kPa  kPa/m 

1 5.0 5.3 13.3 10.6 26.5 1876 16.6 20.9 Fig. 4(a) 

2 6.0 5.3 13.3 10.6 26.5 1880 15.4 11.6 Fig. 4(b) 

3 7.4 5.3 13.3 10.6 26.5 1877 15.3 12.8 Fig. 4(c) 

4 8.0 5.3 13.3 10.6 26.5 1872 15.1 10.8 Fig. 4(d) 

5 6.0 5.6 14.0 11.5 28.8 1874 16.5 14.3 Fig. 4(e) 

 244 

Figure 4 presents the temperature profiles and the change of suction pressure during various 245 

sintering tests with different coke rates. It should be noted that these temperature profiles 246 

likely better reflect gas, rather than solid, temperatures. Furthermore, the measured peak 247 

temperature was affected by different factors such as local solid composition and local 248 

porosity surrounding the thermocouple tip. These composition/porosity effects are likely to 249 

vary between thermocouple to thermocouple and test to test. As such values are qualitative 250 

and should be considered with respect to temperature trends than absolute values. The peak 251 

temperature at the column centre was always high, increasing down the pot as sintering 252 

progressed, which is consistent with the industrial process and traditional sinter pot. The 253 

temperature measurement at the wall shows that thermal conditions were not sufficient to 254 

effectively sinter the ores. To achieve a uniform coke particle distribution radially and 255 

axially, Coke was mixed with ore and fluxing components in the form of particles to simulate 256 

the state in the industrial sinter strand, and fully granulated prior to adding to the millipot. 257 
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The temperature difference between the centre and the wall is principally a result of heat loss 258 

at the wall and not from the non-uniform coke distribution. 259 

 260 

Figure 4 – Temperature and suction pressure profiles during millipot sintering under different 261 

coke rates. (a) Coke rate = 5.0%; T2:  wall temperature, and T3, T4, T6: centre temperatures; 262 

(b) Coke rate = 6.0%; T2: wall temperature, and T3, T5, T6: centre temperatures; (c) Coke 263 

rate = 7.4%; T1 - T6: centre temperatures; (d) Coke rate = 8.0%; T2: wall temperature, and 264 

T1, T3, T4, T6: centre temperatures; (e) Coke rate = 6.0%; T2, T3: wall temperatures, and 265 

T4, T6: centre temperatures; increased suction pressure. T7: flue gas temperature in all plots. 266 

Figure 4 also shows that the suction pressure reduced with the progress of sintering, with a 267 

sharp transition after the flame front had passed through the bottom of the sinter bed. The gas 268 
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flow after the ignition stage was measured to be 64 NL/min, corresponding to a superficial 269 

velocity of 2.9 m/s (empty column, at 0 °C and 1 atm). The gradual reduction in the suction 270 

pressure before the flame front passed through the whole bed reflects a reduction in flow 271 

resistance of the product sinter relative to the feed because of the removal of coke and 272 

moisture from the bed, and the coalescence and rearrangement of pores during sintering. 273 

Notably, the suction pressure at the end of sintering decreased from 7.2 kPa to 5 kPa (from 274 

18.0 kPa/m to 12.5 kPa/m) when the coke rate was increased from 5.0% to 8.0%, which 275 

indicates the final permeability was higher as coke rate increased due to enhanced 276 

coalescence and higher resultant porosity.  277 

Table 1 also includes the result of a sintering test in which the suction pressures at the 278 

ignition and sintering stages were both increased in comparison with the reference conditions 279 

with coke rate at 6% (test 5). The suction pressure was increased to 5.6 and 11.5 kPa (14.0 280 

and 28.8 kPa/m) during ignition and sintering, respectively, in order to increase the oxygen 281 

potential. With similar starting bulk density, the increase in suction pressure caused an 282 

increase in FFS, with increased fines generation being observed compared to test 2. Despite 283 

the negative effect on the extent of sintering, increased suction pressure increased the air flow 284 

in the sintering bed, which is beneficial to maintaining a high oxygen partial pressure and the 285 

formation of SFCA and hematite. 286 

Figure 5 shows the coherent core of the sinter product from testing with 6% coke rate with 287 

increased suction pressure (test 5). In general, the core was well sintered except at the edge 288 

where some embedded, weakly sintered ore and flux particles can be observed.  289 
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 290 

Figure 5. Photographs of the sinter core from testing with 6% coke rate at increased suction 291 

pressures. (a) Side view; (b) cross-section view. 292 

The sample presented in Figure 5 was mounted in epoxy resin and polished to observe its 293 

microstructure and mineral phases. Figure 6(a) presents a photomicrograph of the sinter 294 

cross-section of the core in Figure 5(a) after grinding and polishing which gives an overview 295 

of sintering performance across the millipot and the influence of wall effects. The most 296 

notable feature is that primary hematite is preferentially distributed near the edge of the cross-297 

section due to low sintering temperatures near the wall. Figure 6 (d) shows a typical 298 

photomicrograph of the sinter cross-section taken from the centre of the core in Figure 5(a), 299 

and Figures 6 (e) and (f) are the magnified images of the areas marked on Figure 6(d). 300 

Overall, the area in Figure 6(d) was well sintered; the structure contains many round pores, 301 

indicating that the solid was partially melted during sintering. A large amount of magnetite 302 

was observed which was bonded by SFCA, as shown in Figures 6(e) and (f), due to the high 303 

temperature and low oxygen partial pressure atmosphere during the peak temperature period 304 

in the sintering process. In the sinter adjacent to large pores, secondary hematite and SFCA 305 

were observed. After the passage of the flame front, colder air passed through the already 306 

sintered bed on its way to the reaction zone, providing an oxidizing atmosphere during 307 
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cooling. Needle-like larnite in glass was also observed in the lower part of Figure 6(e), 308 

reflecting the high peak temperature reached similar to that in the industrial sintering process. 309 

Based on the sintering extent as characterized by the morphology and mineral composition, it 310 

may be inferred that the temperature distribution was relatively uniform except in the thin 311 

layer close to the wall of the sinter column. This phenomenon is likely a result of  the 312 

relatively fast heat transfer within the metallic millipot wall and the  slow heat transfer in the 313 

sinter bed. 314 

 315 
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Figure 6 – Photomicrographs of the sinter core in Figure 5: (a) cross-section of the sinter 316 

core; (b), (c) the edge of the core at different section; (d) the centre section of the core; (e), (f) 317 

the rectangular areas as marked in (d). GO: goethite ore; HO: hematite ore; L: larnite. 318 

Figures 6 (b) and (c) present the microphotographs of typical structures of particles around 319 

the edge of the sinter column. Remnant iron ore particles dominate which correspond to those 320 

observed macroscopically in Figure 5 (a). Limited assimilation of ore and flux particles 321 

occurred at the pot wall where heat losses are high. In Figure 6, some unreacted flux and iron 322 

ore particles are present near the edge of the sinter column. Incomplete sintering also took 323 

place in some particles: their shapes were retained but pores and secondary hematite were 324 

formed during sintering. Classification of the semi-reacted particles in Figures 6 (b) and (c) 325 

was inferred based on morphological comparison to unsintered ore samples. Partially melted 326 

areas were observed on the edge of the particles, as characterized by porous structure and 327 

rounded pores. Due to the significantly lower temperature in the edge zone caused by wall 328 

effects, some hematite ore retained its original morphology (Figure 6(b)). The goethite 329 

particles mostly kept the original morphology, but many cracks appeared in the matrix due to 330 

the dehydration reaction at relatively low temperatures (Figure 6(c)).  331 

3.3 Sintering Conditions by Tablet Testing 332 

To better understand the sintering process, tablet experiments were conducted under various 333 

temperatures with different quench methods. To determine the temperatures achieved, a 334 

tablet was prepared with a type R thermocouple placed at its centre. The tablet was then 335 

inserted into a furnace at 1300 °C and allowed to reach a constant temperature before it was 336 

moved to the top end of furnace tube and cooled to room temperature (Figure 7). The tablet 337 

temperature increased sharply when it was heated in the furnace, approaching the furnace 338 

temperature within a minute. The peak heating rate was 88.5 °C/s which compares to 339 
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33.6 °C/s (average of the temperature rising rates from thermocouples T1 to T4 (except 340 

located at the wall) for millipot experiments 1-4). The temperature of the tablet reached 341 

1280 °C and 1288 °C after 1 and 1.4 minutes and plateaued at 1291 °C after 2.1 minutes. The 342 

temperature change during quenching was also very fast, decreasing to below 1000 °C in 343 

seconds. The peak cooling rate was 63.2 °C/s which compares to 20.9 °C/s (average of T1 to 344 

T6 thermocouple rates for millipot test No. 3 in Table 1). 345 

 346 

Figure 7. The temperature profile of a tablet of 6 mm in diameter heated in a furnace at 347 

1300 °C and then quenched in air at room temperature.  348 

Sintering at 1250 °C for 4 minutes and then quenching formed a large amount of SFCA and 349 

SFCA-I (Figure 8). However, significant melting was not observed and a significant fraction 350 

of primary hematite was retained. With increasing sintering temperature, pore coalescence 351 

was more apparent due to increased melting as indicated by the formation of large round 352 

pores. In the tablet sintering tests, the sinter blend was crushed into fine powder and then 353 

pressed into tablets. Many small pores were present among the fine particles of sinter blend. 354 

Along with the increase in the extent of sintering with increasing temperature, the amount of 355 

sinter melt increased with improved fluidity, which helps coalesce the small pores into larger 356 



20 
 

pores. Especially, when a liquid phase was formed, the liquid penetrated into small pores, 357 

forming denser solid/liquid phases and larger pores. The amounts of hematite, SFCA and 358 

SFCA-I also decreased with increasing sintering temperature. As in Figure 8, at 1325 and 359 

1350 °C, the amounts of hematite and SFCAs were minimal as hematite was not stable 360 

throughout the temperature range of the tests in the atmosphere with 0.5% O2.  361 
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362 

 363 

Figure 8. Photomicrographs of the tablets sintered at different temperatures in the 0.5% O2 364 

atmosphere for 4 minutes and then directly quenched in air to room temperature. 365 
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The decomposition of hematite to magnetite as well as oxidation of magnetite would occur at 366 

different temperatures and atmospheres:  367 

6𝐹𝑒2𝑂3 ⇄ 4𝐹𝑒3𝑂4 + 𝑂2         (1) 368 

Thermodynamic calculation using FactSage shows that, in the atmosphere with 0.5% O2, the 369 

decomposition happens above 1235 °C, which implies the decomposition of hematite could 370 

occur in all tablet tests of Figure 8. Under these conditions, oxygen released during hematite 371 

decomposition diffused through the tablet, forming an oxygen partial pressure gradient. As a 372 

result, the hematite close to the edge of the tablet decomposed faster than that at the centre. 373 

This is consistent with the observation that the remaining hematite was present internally 374 

within the tablets sintered at temperatures up to 1300 °C. Above this temperature, no residual 375 

hematite was observed; only a very small amount of secondary hematite was observable at 376 

the very surface, formed by oxidation of the magnetite during fast cooling in air. 377 

From Figure 9, the addition of a 3-minute soaking stage after sintering for 4 minutes mostly 378 

affected the amount of hematite in the tablets. The overall appearance of the tablets was not 379 

obviously changed, although an increase of the proportion of large pores cannot be excluded. 380 

At 1250 °C, three minute holding in air increased the amount of hematite throughout the 381 

tablets. The increased amount of hematite was attributed to the re-oxidation of magnetite 382 

during soaking in air, which was predicted by FactSage to take place below 1383 °C in air. At 383 

1300 °C, additional hematite was only present at the edge of the tablet. It is also noted that 384 

the small fraction of hematite present at the centre of the tablet in Figure 8 at 1300 °C 385 

practically disappeared during the cooling in air (Figure 9). No obvious formation of hematite 386 

was detectable in the tablets sintered at higher temperatures 1325 and 1350°C. It is speculated 387 

that the lack of formation of secondary hematite was due to multiple factors, including 388 

formation of molten phase and gradual replacement of the relatively reducing gas by air in 389 
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the furnace tube. Furthermore, the magnetite in the molten solution had a lower activity and 390 

hence was more stable, while in the early stage of cooling the atmosphere was less oxidizing 391 

compared with air. 392 

During the soaking stage in air, oxygen diffused towards the interior of the tablets. It seems 393 

that only the external layer was affected by the oxidation of magnetite at 1300 °C. The lack of 394 

oxidation in the tablets sintered at temperatures above 1300 °C and then cooled in air is 395 

attributed to the melting of the fine particles constituting the tablets which enclosed the 396 

internal pores and suppressed the diffusion of O2 into the tablets. The magnified image of the 397 

tablet edge (Figure 9) shows that the matrix of the tablets sintered at high temperatures was 398 

dense and impermeable, and hematite existed as a very thin layer at the periphery. The tablet 399 

sintered at 1275°C in 0.5% O2 atmosphere for 4 minutes followed by holding in air for 3 400 

additional minutes has the most similar microstructure to the sinter products from the millipot 401 

and industrial sinter plant when comparing the morphology and mineral phase composition. 402 

 403 



24 
 

Figure 9. Photomicrographs of the tablets sintered at different temperatures in the atmosphere 404 

with 0.5% O2 for 4 minutes followed by holding in air at the lower of the sintering 405 

temperature or 1250 °C for 3 minutes.  406 

3.4 Comparison of the Mineral Compositions of Tablet, Millipot and Industrial 407 

Sinters 408 

The mineral phase compositions of the sintered tablets, millipot and industrial sinter products 409 

obtained by image analysis are summarized in Figure 10. The figure also includes the results 410 

for industrial sinter via the point counting method. In reflectance based image analysis, glass 411 

cannot be distinguished from pores, so the glass content was not quantified, and the total 412 

fractions of hematite, magnetite and SFCA were normalized to 100%. Further, only the 413 

combined amount of SFCA and SFCA-I was obtained, as the reflectance of these two phases 414 

is essentially the same, preventing separate determination via image analysis.  415 

 416 

Figure 10. Comparison of sinter mineral phase compositions under different sintering 417 

conditions (tablets, millipot and industrial). T indicates Tablet experiment at temperature and 418 
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+ indicates three minutes holding in air at 1250 °C during the cooling stage; M indicates 419 

Millipot run at CR (coke rate) and # indicates pressure gradient increased to 14.0 kPa/m in 420 

ignition and 28.8 kPa/m in sintering process; Ind indicates Industrial sample, with IA (image 421 

analysis) and PC (point counting). 422 

For the industrial sinter, 37% hematite, 39% magnetite, and 23% SFCA was determined by 423 

image analysis, which is the closest to the millipot sinter produced with 6% coke rate and 424 

increased suction pressure (viz. 35% hematite, 40% magnetite and 25% SFCA). For the 425 

millipot sinter with 6% coke rate but without the increase in suction pressure, both hematite 426 

and SFCA were lower. An increase in the pressure gradient in the millipot operation caused 427 

an increase in the oxygen partial pressure in the sinter bed, which made the mineral 428 

composition of the sinter closer to that of industrial sinter. Increasing the coke rate above 6% 429 

generated sinter products with more magnetite.  430 

The sinter samples from the tablet experiments changed in mineral composition with the 431 

change in sintering temperature and cooling procedure, as demonstrated by the optical 432 

images. The tablets consisted of finely ground and uniformly mixed blends of iron ores and 433 

fluxes, so the conditions for assimilation reactions between different constituents were more 434 

favourable than in the millipot or industrial sintering process. This helps explain the 435 

occurrence of sintering reactions at 1250°C or even lower temperatures when the particles 436 

remained in the solid state.[1, 24] With increasing temperature, the amount of magnetite 437 

increased steadily, while that of hematite and SFCA decreased. Especially at temperatures 438 

above 1300°C, magnetite accounted for most of the tablets.  439 

Notably, a soaking stage in air at elevated temperatures prior to final cooling improved the 440 

comparability of the tablet to the mineral content in the industrial and pot sintering processes. 441 

Addition of the intermediate cooling stage increased the amounts of hematite and SFCA, 442 
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especially at lower temperatures. Both SFCA and hematite contents reached the maxima 443 

(~40%) under the “T-1250°C+” condition; at this temperature conversion of hematite to 444 

magnetite is low and the high hematite content favoured the formation of SFCA, because of 445 

low reduction driving force. [2, 16, 25] In the tablet sintered at 1275°C, the increased 446 

temperature caused more reduction and formation of melting phase. Reoxidation and 447 

recrystallisation during the intermediate soaking stage generated a similar mineral 448 

composition and structure to that of industrial sinter (Figure 11). 449 

 450 

Figure 11. Comparison of three sintering scales: (a) industrial; (b) millipot under M-CR6%#; 451 

(c) tablet under T-1275 °C+. 452 

Overall, the microstructure and mineral phase composition of the industrial sinter were most 453 

like the sintered tablet “T-1275°C+” and millipot sinter with industrially comparable bulk 454 

density, 6% coke rate and increased suction pressure. In millipot, compaction not only 455 

increases the overall bulk density, but also improves uniformity across the column diameter, 456 

reducing peripheral gas flow minimizing the wall affected zone. The pressure gradient and 457 

hence overall gas flowrate were increased to achieve comparable flame front speeds. With a 458 

higher coke rate offsetting heat losses to the wall and increased waste gas volume to regain 459 

target centreline temperatures. The similar microstructure and phase composition achieved 460 

indicate that the gas atmosphere in the analyzed central portion was similar to that in the 461 

industrial sinter.  462 
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Overall, based on the results in this study, the millipot sinter, except the near-wall product, 463 

can represent industrial sinter, which bridges the gap between sintered tablets and larger scale 464 

pots or full plant scale. The millipot can therefore be used as a tool for designing larger scale 465 

experiments or sintering trials. 466 

4. Conclusions 467 

To determine the feasibility of small-scale pot testing, a ‘millipot’ facility was established to 468 

examine the sintering performance of iron ores and other non-traditional ferrous materials. 469 

Three sinter processing methods, viz. tablet, millipot and industrial sinter plant, were 470 

evaluated and sinter products compared using the same blend. The major findings are 471 

summarized as follows: 472 

1) For the millipot, some experimental adjustments have to be made to achieve conditions 473 

comparable to full scale sintering, including:  474 

a. mechanical compaction, to increase bulk density of the sinter bed, which 475 

decreases the flame front speed (FFS) and the wall effect;  476 

b. coke rate increase, to offset high heat loss from the small diameter column; 477 

and 478 

c. suction pressure increase, to adjust the oxidizing atmosphere during sintering. 479 

With these adjustments, the millipot achieved sintering conditions in a similar range to the 480 

industrial process (density of sinter bed, temperature, and FFS), and a sinter product with 481 

similar microstructure and mineral composition. It was not possible to fully eliminate the 482 

wall effect in the small diameter millipot set-up.  483 

2) Based on a comparison of microstructure and mineral composition of the sinter products 484 

produced:  485 
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a. a tablet sintered at 1275 °C with 0.5% O2 for 4 minutes, followed by further 486 

sintering in air for 3 minutes; and 487 

b. a millipot sinter produced with coke rate 6%, suction pressure 14.0 kPa/m 488 

during ignition and 28.8 kPa/m during sintering 489 

were most similar to the industrial sinter investigated. 490 
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Figure 1. Schematics of laboratory sintering set-ups: (a) Millipot; (b) vertical electrical 565 

furnace. 566 

Figure 2. Optical images of industrial sinter. Q: quartz; PH: primary hematite; SH: secondary 567 

hematite; M: magnetite; S: silicate; SFCA: platy shape of silico-ferrite of calcium and 568 

aluminum; SFCA-I: acicular shape of silico-ferrite of calcium and aluminum. 569 

Figure 3. The changes of the bed height and average bulk density with the loaded weight. The 570 

bed height lines overlap. 571 

Figure 4. Temperature and suction pressure profiles during millipot sintering under different 572 

coke rates. (a) Coke rate = 5.0%; T2:  wall temperature, and T3, T4, T6: centre temperatures; 573 

(b) Coke rate = 6.0%; T2: wall temperature, and T3, T5, T6: centre temperatures; (c) Coke 574 

rate = 7.4%; T1 - T6: centre temperatures; (d) Coke rate = 8.0%; T2: wall temperature, and 575 

T1, T3, T4, T6: centre temperatures; (e) Coke rate = 6.0%; T2, T3: wall temperatures, and 576 

T4, T6: centre temperatures; increased suction pressure. T7: flue gas temperature in all plots. 577 

Figure 5. Photographs of the sinter core from testing with 6% coke rate at increased suction 578 

pressures. (a) side view; (b) cross-section view. 579 

Figure 6. Photomicrographs of the sinter core in Figure 5: (a) cross-section of the sinter core; 580 

(b), (c) the edge of the core at different section; (d) the centre section of the core; (e), (f) the 581 

rectangular areas as marked in (d). GO: goethite ore; HO: hematite ore; L: larnite. 582 

Figure 7. The temperature profile of a tablet of 6 mm in diameter heated in a furnace at 583 

1300 °C and then quenched in air at room temperature.  584 

Figure 8. Photomicrographs of the tablets sintered at different temperatures in the atmosphere 585 

with 0.5% O2 for 4 minutes and then directly quenched in air at room temperature. 586 
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Figure 9. Photomicrographs of the tablets sintered at different temperatures in the atmosphere 587 

with 0.5% O2 for 4 minutes followed by holding in air at the lower of the sintering 588 

temperature or 1250 °C for 3 minutes.  589 

Figure 10. Comparison of sinter mineral phase compositions under different sintering 590 

conditions (tablets, millipot and industrial). T indicates Tablet experiment at temperature and 591 

+ indicates three minutes holding in air at 1250 °C during the cooling stage; M indicates 592 

Millipot run at CR (coke rate) and # indicates pressure gradient increased to 14.0 kPa/m in 593 

ignition and 28.8 kPa/m in sintering process; Ind indicates Industrial sample, with IA (image 594 

analysis) and PC (point counting). 595 

Figure 11. Comparison of three sintering scales: (a) industrial; (b) millipot under M-CR6%#; 596 

(c) tablet under T-1275 °C+. 597 
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