341 research outputs found

    Personalized Video Recommendation Using Rich Contents from Videos

    Full text link
    Video recommendation has become an essential way of helping people explore the massive videos and discover the ones that may be of interest to them. In the existing video recommender systems, the models make the recommendations based on the user-video interactions and single specific content features. When the specific content features are unavailable, the performance of the existing models will seriously deteriorate. Inspired by the fact that rich contents (e.g., text, audio, motion, and so on) exist in videos, in this paper, we explore how to use these rich contents to overcome the limitations caused by the unavailability of the specific ones. Specifically, we propose a novel general framework that incorporates arbitrary single content feature with user-video interactions, named as collaborative embedding regression (CER) model, to make effective video recommendation in both in-matrix and out-of-matrix scenarios. Our extensive experiments on two real-world large-scale datasets show that CER beats the existing recommender models with any single content feature and is more time efficient. In addition, we propose a priority-based late fusion (PRI) method to gain the benefit brought by the integrating the multiple content features. The corresponding experiment shows that PRI brings real performance improvement to the baseline and outperforms the existing fusion methods

    A Real-time Method for Inserting Virtual Objects into Neural Radiance Fields

    Full text link
    We present the first real-time method for inserting a rigid virtual object into a neural radiance field, which produces realistic lighting and shadowing effects, as well as allows interactive manipulation of the object. By exploiting the rich information about lighting and geometry in a NeRF, our method overcomes several challenges of object insertion in augmented reality. For lighting estimation, we produce accurate, robust and 3D spatially-varying incident lighting that combines the near-field lighting from NeRF and an environment lighting to account for sources not covered by the NeRF. For occlusion, we blend the rendered virtual object with the background scene using an opacity map integrated from the NeRF. For shadows, with a precomputed field of spherical signed distance field, we query the visibility term for any point around the virtual object, and cast soft, detailed shadows onto 3D surfaces. Compared with state-of-the-art techniques, our approach can insert virtual object into scenes with superior fidelity, and has a great potential to be further applied to augmented reality systems

    Neural Pairwise Ranking Factorization Machine for Item Recommendation

    Get PDF
    The factorization machine models attract significant attention from academia and industry because they can model the context information and improve the performance of recommendation. However, traditional factorization machine models generally adopt the point-wise learning method to learn the model parameters as well as only model the linear interactions between features. They fail to capture the complex interactions among features, which degrades the performance of factorization machine models. In this paper, we propose a neural pairwise ranking factorization machine for item recommendation, which integrates the multi-layer perceptual neural networks into the pairwise ranking factorization machine model. Specifically, to capture the high-order and nonlinear interactions among features, we stack a multi-layer perceptual neural network over the bi-interaction layer, which encodes the second-order interactions between features. Moreover, the pair-wise ranking model is adopted to learn the relative preferences of users rather than predict the absolute scores. Experimental results on real world datasets show that our proposed neural pairwise ranking factorization machine outperforms the traditional factorization machine models

    Preference-aware Task Assignment in Spatial Crowdsourcing:from Individuals to Groups

    Get PDF

    HeteFedRec: Federated Recommender Systems with Model Heterogeneity

    Full text link
    Owing to the nature of privacy protection, federated recommender systems (FedRecs) have garnered increasing interest in the realm of on-device recommender systems. However, most existing FedRecs only allow participating clients to collaboratively train a recommendation model of the same public parameter size. Training a model of the same size for all clients can lead to suboptimal performance since clients possess varying resources. For example, clients with limited training data may prefer to train a smaller recommendation model to avoid excessive data consumption, while clients with sufficient data would benefit from a larger model to achieve higher recommendation accuracy. To address the above challenge, this paper introduces HeteFedRec, a novel FedRec framework that enables the assignment of personalized model sizes to participants. In HeteFedRec, we present a heterogeneous recommendation model aggregation strategy, including a unified dual-task learning mechanism and a dimensional decorrelation regularization, to allow knowledge aggregation among recommender models of different sizes. Additionally, a relation-based ensemble knowledge distillation method is proposed to effectively distil knowledge from heterogeneous item embeddings. Extensive experiments conducted on three real-world recommendation datasets demonstrate the effectiveness and efficiency of HeteFedRec in training federated recommender systems under heterogeneous settings
    • …
    corecore