320 research outputs found

    A two-way regularization method for MEG source reconstruction

    Get PDF
    The MEG inverse problem refers to the reconstruction of the neural activity of the brain from magnetoencephalography (MEG) measurements. We propose a two-way regularization (TWR) method to solve the MEG inverse problem under the assumptions that only a small number of locations in space are responsible for the measured signals (focality), and each source time course is smooth in time (smoothness). The focality and smoothness of the reconstructed signals are ensured respectively by imposing a sparsity-inducing penalty and a roughness penalty in the data fitting criterion. A two-stage algorithm is developed for fast computation, where a raw estimate of the source time course is obtained in the first stage and then refined in the second stage by the two-way regularization. The proposed method is shown to be effective on both synthetic and real-world examples.Comment: Published in at http://dx.doi.org/10.1214/11-AOAS531 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Study on serum fluorescence spectra based on wavelet transform

    Get PDF
    Blood plays an important role in clinical diagnosis and treatment and as such, the analysis of blood spectrum will be of very important practical significance. Serum fluorescence emission intensity is closely related with the excitation wavelength; when the excitation wavelength is 230 nm, the blood lipid concentration and fluorescence intensity was significantly correlated. On the contrary, blood sugar was almost with no effect on the strength. Wavelet analysis was used in signal de-noising to get a wide range of applications. In this paper, fluorescence spectrum was divided into four layers by db4 wavelet, according to the principle of stein unbiased likelihood estimate.To choose the threshold, noise was removed and reconstruction signal received. This paper studied the correlation between blood lipid concentration and original fluorescence intensity, reconstruction fluorescence intensity and the fourth layer fluorescence strength. Some significant results were achieved, providing an experimental basis for further study on the fluorescence spectrum of blood

    Can We Have Superconvergent Gradient Recovery Under Adaptive Meshes?

    Full text link

    Recent contrasting winter temperature changes over North America linked to enhanced positive Pacific‐North American pattern

    Full text link
    Recently enhanced contrasts in winter (December‐January‐February) mean temperatures and extremes (cold southeast and warm northwest) across North America have triggered intensive discussion both within and outside of the scientific community, but the mechanisms responsible for these contrasts remain unresolved. Here we use a combination of observations and reanalysis data sets to show that the strengthened contrasts in winter mean temperatures and extremes across North America are closely related to an enhancement of the positive Pacific‐North American (PNA) pattern during the second half of the 20th century. Recent intensification of positive PNA events is associated with amplified planetary waves over North America, driving cold‐air outbreaks into the southeast and warm tropical/subtropical air into the northwest. This not only results in a strengthened winter mean temperature contrast but increases the occurrence of the opposite‐signed extremes in these two regions.Key PointsThe enhanced contrasts in winter mean temperatures and extremes in North America are observedRecent enhancement of positive PNA is a main cause of the contrasting winter temperature changesThe study provides a framework for detection and attribution of climate change in North AmericaPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/115952/1/grl53404_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/115952/2/grl53404.pd

    Extraction of Electron Self-Energy and Gap Function in the Superconducting State of Bi_2Sr_2CaCu_2O_8 Superconductor via Laser-Based Angle-Resolved Photoemission

    Full text link
    Super-high resolution laser-based angle-resolved photoemission measurements have been performed on a high temperature superconductor Bi_2Sr_2CaCu_2O_8. The band back-bending characteristic of the Bogoliubov-like quasiparticle dispersion is clearly revealed at low temperature in the superconducting state. This makes it possible for the first time to experimentally extract the complex electron self-energy and the complex gap function in the superconducting state. The resultant electron self-energy and gap function exhibit features at ~54 meV and ~40 meV, in addition to the superconducting gap-induced structure at lower binding energy and a broad featureless structure at higher binding energy. These information will provide key insight and constraints on the origin of electron pairing in high temperature superconductors.Comment: 4 pages, 4 figure

    Neurofibromin Deficiency Induces Endothelial Cell Proliferation and Retinal Neovascularization

    Get PDF
    Purpose: Neurofibromatosis type 1 (NF1) is the result of inherited mutations in the NF1 tumor suppressor gene, which encodes the protein neurofibromin. Eye manifestations are common in NF1 with recent reports describing a vascular dysplasia in the retina and choroid. Common features of NF1 retinopathy include tortuous and dilated feeder vessels that terminate in capillary tufts, increased endothelial permeability, and neovascularization. Given the retinal vascular phenotype observed in persons with NF1, we hypothesize that preserving neurofibromin may be a novel strategy to control pathologic retinal neovascularization. Methods: Nf1 expression in human endothelial cells (EC) was reduced using small hairpin (sh) RNA and EC proliferation, migration, and capacity to form vessel-like networks were assessed in response to VEGF and hypoxia. Wild-type (WT), Nf1 heterozygous (Nf1+/-), and Nf1flox/+;Tie2cre pups were subjected to hyperoxia/hypoxia using the oxygen-induced retinopathy model. Retinas were analyzed quantitatively for extent of retinal vessel dropout, neovascularization, and capillary branching. Results: Neurofibromin expression was suppressed in response to VEGF, which corresponded with activation of Mek-Erk and PI3-K-Akt signaling. Neurofibromin-deficient EC exhibited enhanced proliferation and network formation in response to VEGF and hypoxia via an Akt-dependent mechanism. In response to hyperoxia/hypoxia, Nf1+/- retinas exhibited increased vessel dropout and neovascularization when compared with WT retinas. Neovascularization was similar between Nf1+/- and Nf1flox/+;Tie2cre retinas, but capillary drop out in Nf1flox/+;Tie2cre retinas was significantly reduced when compared with Nf1+/- retinas. Conclusions: These data suggest that neurofibromin expression is essential for controlling endothelial cell proliferation and retinal neovascularization and therapies targeting neurofibromin-deficient EC may be beneficial
    corecore