182 research outputs found

    Sustainability and waste imports in China: Pollution haven or resources hunting

    Get PDF
    © 2021 by the authors. Licensee MDPI, Basel, Switzerland. Motivations behind a country’s importation of waste are categorized into the pollution haven hypothesis (PHH) and the resource hunting hypothesis (RHH). The importation of wastes can lead to environmental sustainability concerns, requiring governments to intervene when the market fails to reduce the negative externalities by strengthening and implementing environmental regulations. Motivated by China’s position within a rapidly growing but environmentally damaging sector of trade, this paper has three goals: (1) to classify the primary hypothesis that governs China’s flow of traded wastes; (2) to verify the heterogeneous impact of the pollution paradise motivation and resource demand motivation of waste imports from developed and developing countries, and across industries; (3) to assess the impact of domestic environmental regulations on the motives behind China’s waste imports. Using 28 imported waste-varieties from 20 of China’s major trade partners across 24 years, findings indicate that the flow of Chinese waste imports is relatively unresponsive under the pollution haven effect. However, the resource hunting effect from developing countries is significantly greater than what originates from developed countries, despite the laws of 2011 and 2017 established to restrict resource hunting activities. These results have important implications for improving the efficiency of China’s waste sorting and recycling systems

    Active Encoding of Flexural Wave with Non-Diffractive Talbot Effect

    Full text link
    This study employs the theory of conformal transformation to devise a Mikaelian lens for flexural waves manipulation. We investigate the propagation patterns of flexural waves in the lens under scenarios of plane wave and point source incidence. Additionally, the study explores the Talbot effect generated by interference patterns of multiple sources. Within the Mikaelian lens, the Talbot effect displays non diffractive characteristics, facilitating propagation over considerable distances. Leveraging the non-diffractive attributes of the Talbot effect in the Mikaelian lens, the paper discusses the feasibility of encoding flexural waves based on active interference sources. Simulation and experimental validation attest to the lens's effective active encoding. This research introduces novel perspectives on flexural wave encoding, showcasing potential applications in flexural wave communication, detection, and related fields

    The nuclear phosphatase SCP4 regulates FoxO transcription factors during muscle wasting in chronic kidney disease

    Get PDF
    Chronic kidney disease (CKD) and related inflammatory responses stimulate protein-energy wasting, a complication causing loss of muscle mass. Primarily, muscle wasting results from accelerated protein degradation via autophagic/lysosomal and proteasomal pathways, but mechanisms regulating these proteolysis pathways remain unclear. Since dephosphorylation of FoxOs regulates ubiquitin/proteasome protein metabolism, we tested whether a novel nuclear phosphatase, the small C-terminal domain phosphatase (SCP) 4, regulates FoxOs signaling and, in turn, muscle wasting. In cultured mouse myoblast cells, SCP4 overexpression stimulated proteolysis, while knockdown of SCP4 prevented the proteolysis stimulated by inflammatory cytokines. SCP4 overexpression led to nuclear accumulation of FoxO1/3a followed by increased expression of catabolic factors including myostatin, Atrogin-1, and MuRF-1, and induction of lysosomal-mediated proteolysis. Treatment of C2C12 myotubes with proinflammatory cytokines stimulated SCP4 expression in an NF-\u3baB-dependent manner. In skeletal muscle of mice with CKD, SCP4 expression was up-regulated. Similarly, in skeletal muscle of patients with CKD, SCP4 expression was significantly increased. Knockdown of SCP4 significantly suppressed FoxO1/3a-mediated expression of Atrogin-1 and MuRF-1 and prevented muscle wasting in mice with CKD. Thus, SCP4 is a novel regulator of FoxO transcription factors and promotes cellular proteolysis. Hence, targeting SCP4 may prevent muscle wasting in CKD and possibly other catabolic conditions

    A linear chained approach for service invocation in IP multimedia subsystem.

    Get PDF
    IP Multimedia Subsystem (IMS) is considered to provide multimedia services to users through an IP-based control plane. The current IMS service invocation mechanism, however, requires the Serving-Call Session Control Function (S-CSCF) invokes each Application Server (AS) sequentially to perform service subscription pro?le, which results in the heavy load of the S-CSCF and the long session set-up delay. To solve this issue, this paper proposes a linear chained service invocation mechanism to invoke each AS consecutively. By checking all the initial Filter Criteria (iFC) one-time and adding the addresses of all involved ASs to the ?Route? header, this new approach enables multiple services to be invoked as a linear chain during a session. We model the service invocation mechanisms through Jackson networks, which are validated through simulations. The analytic results verify that the linear chained service invocation mechanism can effectively reduce session set-up delay of the service layer and decrease the load level of the S-CSC

    Molecular Epidemiology and Risk Factors of Ventilator-Associated Pneumonia Infection Caused by Carbapenem-Resistant Enterobacteriaceae

    Get PDF
    Ventilator-associated pneumonia (VAP) infection caused by carbapenem-resistant Enterobacteriaceae (CRE) is becoming more prevalent, thus seriously affecting patient outcomes. In this paper, we studied the drug resistance mechanism and epidemiological characteristics of CRE, and analyzed the infection and prognosis factors of VAP caused by CRE, to provide evidence for effective control of nosocomial infection in patients with VAP. A total of 58 non-repetitive CRE strains of VAP were collected from January 2016 to June 2018. To explore the risk factors of CRE infection, 1:2 group case control method was used to select non CRE infection patients at the same period as the control group. Among the 58 CRE strains, the most common isolates included Klebsiella pneumoniae and Escherichia coli. All strains were sensitive to polymyxin B, which features better sensitivity to other antibiotics such as minocycline, trimethoprim/sulfamethoxazole, and amikacin. Multiple drug resistance genes were detected at the same time in most strains. KPC-2 was the most common carbapenemase-resistant gene in Klebsiella pneumoniae, whereas NDM-1 was more common in Escherichia coli. The risk factors correlated with CRE infection included intensive care unit (ICU) occupancy time >7 days (OR = 2.793; 95% CI 1.439~5.421), antibiotic exposure during hospital stay including those to enzyme inhibitors (OR = 1.977; 95% CI 1.025~3.812), carbapenems (OR = 3.268; 95% CI 1.671~6.392), antibiotic combination therapy(OR = 1.951; 95% CI 1.020~3.732), and nerve damage (OR = 3.013; 95% CI 1.278~7.101). Multivariable analysis showed that ICU stay >7 days (OR = 1.867; 95% CI 1.609~20.026), beta-lactamase inhibitor antibiotics (OR = 7.750; 95% CI 2.219~27.071), and carbapenem (OR = 9.143; 95% CI 2.259~37.01) are independent risk factors for VAP carbapenem caused by Carbapenem-resistant Enterobacteriaceae. A high resistance rate of CRE isolated from VAP indicated that the infected patients featured higher mortality and longer hospital stay time than the control group. Multiple risk factors for CRE infection and their control can effectively prevent the spread of VAP
    corecore