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Abstract

Chronic kidney disease (CKD) and related inflammatory responses stimulate protein-energy 

wasting, a complication causing loss of muscle mass. Primarily, muscle wasting results from 

accelerated protein degradation via autophagic/lysosomal and proteasomal pathways, but 

mechanisms regulating these proteolysis pathways remain unclear. Since dephosphorylation of 

FoxOs regulates ubiquitin/proteasome protein metabolism, we tested whether a novel nuclear 

phosphatase, the small C-terminal domain phosphatase (SCP) 4, regulates FoxOs signaling and, in 

turn, muscle wasting. In cultured mouse myoblast cells, SCP4 overexpression stimulated 

proteolysis while knockdown of SCP4 prevented the proteolysis stimulated by inflammatory 

cytokines. SCP4 overexpression led to nuclear accumulation of FoxO1/3a followed by increased 

expression of catabolic factors including myostatin, Atrogin-1 and MuRF-1, and induction of 

lysosomal-mediated proteolysis. Treatment of C2C12 myotubes with proinflammatory cytokines 
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stimulated SCP4 expression in an NF-κB-dependent manner. In skeletal muscle of mice with 

CKD, SCP4 expression was up-regulated. Similarly, in skeletal muscle of patients with CKD, 

SCP4 expression was significantly increased. Knockdown of SCP4 significantly suppressed 

FoxO1/3a-mediated expression of Atrogin-1 and MuRF-1 and prevented muscle wasting in mice 

with CKD. Thus, SCP4 is a novel regulator of FoxO transcription factors and promotes cellular 

proteolysis. Hence, targeting SCP4 may prevent muscle wasting in CKD and possibly other 

catabolic conditions.
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Introduction

Loss of lean body mass increases the risks of morbidity and mortality in patients with 

chronic kidney disease (CKD). Although the mechanisms leading to muscle wasting are 

complicated, significant progress has been made towards understanding this catabolic 

situation. For example, in mice with CKD, we found acidosis or cytokines impaired IGF-1/

insulin signaling that triggers a caspase-3/ROCK1/PTEN negative feedback loop to suppress 

Akt sustainably [1–3]. A decreased Akt activity leads to decreased phosphorylation of 

downstream effectors, such as forkhead transcription factors (FoxOs) [4;5]. 

Dephosphorylation of FoxO1 at Thr24 or FoxO3a at Thr32 triggers the nuclear import and 

subsequently, the stimulation of the UPS proteolytic activity by increasing the expression of 

E3 ubiquitin ligases, Atrogin-1/ MAFbx and MuRF1 [6;7]. In addition, FoxO1 controls the 

expression of myostatin, a myokine which limits muscle growth and contribute to CKD-

induced muscle wasting [8–10]. However, the FoxOs’ transcription activity is not only 

controlled by Akt signaling; phosphatases or nuclear kinases, by changing nuclear export or 

import of FoxOs, also influence their activities [11;12]. For example, CK1 can 

phosphorylate FoxOs and facilitate FoxOs’ nuclear export to decrease their activities [13].

Other inflammatory responses induced by transcription factors, such as NF-κB and signal 

transducer and activator of transcription 3 (STAT3) stimulate the expression of atrophy 

genes and contribute to muscle atrophy [14]. Several pro-inflammatory cytokines, such as 

tumor necrosis factor-α (TNFα), interleukin-6 (IL-6), IL-1, and interferon-γ(IFN-γ), are 

elevated in CKD, cancer, and other catabolic conditions, and may together contribute to 

muscle wasting [15;16]. NF-κB is known to mediate the cytokine-induced muscle 

proteolysis by activating the transcription of MuRF1 [17;18]. STAT3 is also involved in 

inflammatory responses that are related to muscle wasting. For example, CKD stimulates the 

expression of STAT3 in the muscles, which in turn increases the expression of myostatin, a 

growth factor belonging to the transforming growth factor (TGF) superfamily, which induces 

muscle atrophy [19;20]. Recent reports have enlarged the scope of power for the TGFβ 
superfamily. The bone morphogenetic protein (BMP) pathway reportedly acts as the 

fundamental hypertrophic signal and dominates myostatin signaling. Moreover, BMP-

Smad1/5/8 negatively regulates a novel ubiquitin ligase MUSA1, which is required for 

muscle loss [21;22].
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The small C-terminal domain phosphatases (SCPs) were discovered as nuclear phosphatase 

to dephosphorylate the C-terminal domain (CTD) of RNA polymerase II (Pol II) and hence 

control transcription cycle and gene expression [23;24]. There is also evidence that SCPs 

can modify the phosphorylation state of transcription factors and affect the transcriptional 

activities [25]. Our interest in SCP4 (also called CTDSPL2) was stimulated by the finding 

that SCP4 specifically dephosphorylates transcription factor Smad1/5/8; these reactions 

attenuate BMP-induced transcriptional activities [26;27]. We identified that SCP4 not only 

dephosphorylated Smad1/5, but also influenced FoxOs’ phosphorylation status. 

Furthermore, we examined how SCP4 influences muscle metabolism. Specifically, we 

studied whether SCP4 regulates muscle protein synthesis and degradation, and investigated 

whether inhibition of SCP4 would blunt muscle wasting in mice with CKD.

Results

SCP4 is a nuclear phosphatase expressed in skeletal muscle cells

SCP4 consists of a regulatory domain (amino acids 1–262), which contains two nuclear 

locations signaling (NLS), and a catalytic phosphatase domain (amino acids 263–466) that 

reportedly dephosphorylates Smad1/5 (Fig. 1a). We detected that SCP4 mRNA is widely 

expressed in the heart, skeletal muscles, liver, kidney, and spleen (Fig. 1b) and SCP4 protein 

is mainly located in the nuclei of C2C12 myotubes and myofibers in normal mice and 

healthy individuals (Fig. 1c). Using a Phospho Explorer antibody microarray (Supplemental 

Table 1), we found that knockdown of SCP4 promoted the phosphorylation of more than 

25% proteins (Figure 1d). KEGG enrichment pathway analysis of significantly changed 

proteins revealed that Cancer pathway, MAPK signaling pathway, ErbB signaling pathway 

and Insulin signaling pathway as the top four enriched pathways (Fig. 1e). Notably, SCP4 

knockdown stimulated the phosphorylation of FoxOs and Smads (Fig. 1f), suggesting SCP4 

may influence the activities of these factors by regulating their nuclear export.

In C2C12 myotubes, SCP4/CTDSPL2 causes atrophy by stimulating protein degradation

To ascertain the function of SCP4 in muscle protein metabolism, we measured rates of the 

protein synthesis and degradation in C2C12 myotubes, which had been transfected with a 

plasmid encoding SCP4 tagged green fluorescent protein (SCP4-GFP). As shown in Fig. 2a, 

overexpression of SCP4-GFP resulted in the accumulation of SCP4 in C2C12 myotubes. 

This induction was associated with reduction in the diameter of the myotubes (Fig. 2b). We 

also found that the rate of the protein synthesis was not significantly changed in myotubes 

with the overexpression of SCP4 (Fig. 2c); while the rate of protein degradation in these 

myotubes was significantly increased compared to the results in control myotubes with 

forced-expression of GFP only (Fig. 2d). The increase in overall protein degradation was a 

result of activation of both lysosomal and proteasomal proteolysis because lactacystin (a 

proteasomal inhibitor, 8 uM) or concanamycin A (a lysosomal inhibitor, 0.1 uM) 

significantly suppressed the rate of protein degradation stimulated by SCP4 (Fig. 2e). 

Interestingly, SCP4-induced protein degradation was partially blocked by BMP2, but largely 

suppressed by IGF-1 (Fig. 2f). Taken together, these results indicate that SCP4 regulates 

muscle degradation by being involved in at least two signaling pathways, namely BMP-

Smad1/5 and Akt/FoxO1/3a signaling.
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SCP4 blocks FoxO1/3a nuclear export and enhances Atrogin-1 and MuRF1 expression

To investigate the mechanism by which SCP4 influences muscle protein metabolism, we 

examined how the overexpression of SCP4 changes the gene expression profiles in C2C12 

myotubers. By using the “Myogenesis & Myopathy PCR Array”, we analyzed the 

expression of 84 key genes involved in skeletal muscle protein metabolism, function, and 

disease-related processes (Fig. 3a). As shown in Fig. 3b, SCP4 overexpression upregulated 

~20% of the tested genes, including myostatin, Atrogin-1 and MuRF1, three important 

factors mediating muscle proteolysis. By using qPCR, we confirmed the induction of 

myostatin (Fig. 3c) and Atrogin-1 and MuRF1 by SCP4 overexpression (Fig. 3d). In 

addition, we found that the expression of MUSA1 (muscle ubiquitin ligase of the SCF 

complex in atrophy-1, a newly identified muscle ubiquitin E3 ligase regulated by BMP 

signaling [22]), was upregulated by SCP4 overexpression (Fig. 3d, right panel). Myostatin, 

Atrogin-1 and MURF1 expression were controlled by Akt/FoxOs signaling, but we did not 

detect any change in p-Akt level due to SCP4 overexpression in C2C12 myotubes (Fig. 3e). 

Instead, we found that the overexpression of SCP4 significantly suppressed p-FoxO1/3a 

(Fig. 3f). To confirm that SCP4 targets FoxO1/3a to stimulate atrogene expressions, we 

studied the nuclear trafficking of FoxO1 in C2C12 cells overexpressing SCP4-GFP and 

FoxO1 tagged with red fluorescent protein. Using live cell confocal microscopy, we detected 

that there were remarkable amounts of FoxO1-RFP located in the nuclei of C2C12 cells 

cultured in serum-free media (Fig. 3g, 0 min). FoxO1-RFP started to traffic out the nuclei 

which had not been transfected with SCP4-GFP 15 min after insulin (2 μg/ml) was added; 

within 60 min after the addition of insulin, most of the FoxO1-RFP had moved into the 

cytoplasm (Fig. 3g, middle panel, arrow, and Fig. 3h). In contrast, in the cells that 

overexpressed SCP4-GFP and FoxO1-RFP, addition of insulin did not drive FoxO1-RFP out 

of the nucleus (Fig. 3e, middle panel, asterisk). These results indicate that SCP4 retains 

FoxO1 in the nucleus even though phosphor-Akt remains unchanged.

Knockdown of SCP4 blunts proteolysis stimulated by serum-depletion in C2C12 cells

Since SCP4 overexpression causes atrophy of C2C12 myotubes, inhibition of SCP4 could 

prevent proteolysis induced by serum depletion. To examine this possibility, we used a 

siRNA approach and measured the rate of degradation stimulated by serum depletion in 

C2C12 myotubes. C2C12 myotubes were transfected with siRNAs for 48 h, followed by an 

incubation in serum-free media for 36 h. The knockdown efficiency was confirmed with 

western blot, the protein level of SCP4 was 90% lower compared to the myotubes 

transfected with control siRNA (Fig. 4a). As expected, we found that the knockdown of 

SCP4 significantly suppressed the rate of protein degradation that was stimulated by serum 

depletion (Fig. 4b). The response was associated also with the suppression of Myostatin, 

Atrogin-1 and MuRF1 expressions (Fig. 4c). Silencing SCP4 did not affect the p-Akt level 

but increased the levels of p-FoxO1 and p-FoxO3a (Fig. 4d). These results demonstrate that 

silencing SCP4 suppresses FoxO1/3a mediated muscle proteolysis induced by catabolic 

stimuli.
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Overexpression of SCP4 in muscle results in myofiber atrophy in mice

Since overexpression of SCP4 stimulates protein degradation in C2C12 myotubes, we next 

determined whether forced expression of SCP4 is sufficient to cause muscle fiber atrophy. 

The tibialis anterior (TA) muscles of normal C57B6J mice were transfected with control 

GFP or GFP-SCP4 plasmid using electroporation. We first validated the efficiency of 

transfection by examining the fluorescence intensity in muscle fibers transfected with the 

control GFP plasmid. As shown in the Supplemental Fig. 1a, more than 70% of myofibers 

expressed GFP at 14 days after transfection. TA muscle sections were then stained with anti-

dystrophin antibody to outline myofibers. In muscles that were transfected with SCP4-GFP, 

we observed a remarkable SCP4-GFP expression in the nuclear fractions (Fig. 5a). We then 

examined the cross-sectional area (CSA) of myofibers expressing either GFP or SCP4-GFP. 

Forced SCP4 expression caused a ~36% decrease in fiber CSAs compared to myofibers 

transfected with GFP (Supplemental Fig 1b). This result was confirmed by finding a 

leftward shift in the distribution of the CSAs of myofibers that had forced expression of 

SCP4-GFP (Fig. 5b). We also detected that there was a decrease in both p-FoxO1 and p-

FoxO3a compared to results in muscles transfected with the control GFP (Fig. 5c). 

Consistent with these results, the expression of Myostatin, Atrogin-1, MuRF1 and MUSA1 

were increased in muscles electroporated with SCP4-GFP (Fig. 5d). Thus, forced expression 

of SCP4 sufficiently causes myofibers atrophy even in normal mice, highlighting its 

catabolic effects in muscle protein metabolism.

CKD stimulates SCP4 expression in skeletal muscles

To investigate the pathophysiological relevance of SCP in muscle catabolism, we measured 

SCP4 mRNA and protein level in muscles from mice with CKD. There was significant 

increase in mRNA and protein in the muscles of mice with CKD (Fig. 6a, b). To determine 

whether SCP4 is induced by CKD in patients, we examined its expression in samples of 

rectus abdominis muscle from CKD patients and age/gender match controls [28]. There 

were significant increases in SCP4 protein level in muscles of CKD patients compared to 

healthy subjects (Fig. 6c, d). Next, we ascertained the mechanism by which CKD stimulates 

SCP4 expression in C2C12 myotubes. By analyzing the promoter region of SCP4, we found 

that there were many binding sites for inflammatory transcription factors, including NF-κB, 

E2Fs, Stat1/3, and C/EBPs (supplemental Fig. 2a). This stimulated us to investigate if CKD-

related cytokines increase SCP4 expression in muscles. As shown in Fig. 6e, SCP4 

expression (both mRNA and protein) was significantly increased by IL-6, IFN-γ or LPS 

treatments. The combination of IL-6, INF-γand LPS also significantly stimulated the 

expression of SCP4. Because the combination of the four cytokines is a potent stimulator for 

NF-κB activation [29], these results indicated that NF-κB signaling might be a major 

regulator mediating SCP4 expression. To confirm this possibility, we performed a ChIP 

assay to test whether NF-κB (p65) associates with the putative NF-κB binding sites in the 

promoter regions of the SCP4 gene (Supplemental Fig. 2b). Treatment of mixed cytokines 

enriched DNA fragments that cover the sequences in the promoter of SCP4 in the 

immunoprecipitates using anti-NF-κB (p65) antibody (Fig. 6f). We also found that addition 

of QNZ, an NF-κB inhibitor, completely blocked SCP4 expression stimulated by the 

cytokine mixture (Fig. 6g, h). These results suggest that CKD-stimulated NF-κB activation 

mediates the expression of SCP4 in muscle.
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Inhibition of SCP4 protects against muscle wasting in mice with CKD

Because our in vitro experiments showed that the knockdown of SCP4 suppresses muscle 

protein degradation by increasing FoxO1/3a nuclear export, we hypothesized that inhibition 

of SCP4 would block muscle wasting in CKD mice. We tested this possibility using siRNA-

based gene knockdown in the mice model of CKD. We electroporated siRNAs into TA 

muscles of mice with subtotal nephrectomy and pair-fed them for 2 weeks. After 

electroporation, SCP4 protein was reduced more than 70% compared with the results from 

the mice electroporated with a scrambled, control siRNA (Fig. 7a). In CKD mice, there was 

a significant decrease in TA muscle weight after transfected with control siRNA. In contrast, 

when TA muscles of CKD mice were transfected with SCP4 siRNA, the reduction of TA 

muscle weight was significantly improved (Fig. 7b). The improvement also was confirmed 

by an increase in average cross-sectional area of the myofibers (Fig. 7c); the distribution of 

myofibers in TA muscles shifted rightward when compared to results in CKD mice that had 

been electroporated with control siRNA (Fig. 7d). Consistent with the findings, the 

expression of Myostatin, Atrogin-1 and MuRF1 significantly decreased in TA muscles of 

CKD mice that had been electroporated with siSCP4 (Fig. 7e). In CKD mice, we detected 

that both p-FoxO1 and p-FoxO3a were increased in TA muscles with SCP4 knockdown 

compared to results in muscles of CKD mice electroporated with control siRNA (Fig. 7f). 

Thus, the improvement in muscle mass in CKD mice following SCP4 inhibition was likely 

due to the suppression of FoxO1 and FoxO3a transcriptional activity. We summarized that 

SCP4 inhibition prevents muscle wasting in mice with CKD via the increase of FoxO1/3a 

nuclear export (Fig. 8).

Discussion

Recently, it was reported that the phosphatase SCP4, working as a Smad phosphatase, 

negatively regulates BMP signaling [25;27]. We observed that SCP4 not only suppresses 

BMP signaling but also counteracts IGF-1/insulin signaling (Fig. 2F). These distinct 

properties of SCP4 underscore its importance in regulating muscle protein metabolism 

because IGF-1 and BMP signaling are essential for maintaining skeletal muscle mass. By 

identifying the function of SCP4 in muscle protein metabolism, we have uncovered a novel 

mechanism by which CKD stimulates muscle protein wasting: CKD and inflammatory 

cytokines activate NF-κB pathway to stimulate SCP4 expression, and SCP4 

dephosphorylates nuclear FoxO1/3a increasing their nuclear accumulation as a result of the 

activation of muscle proteolysis pathways, including autophagic/lysosomal and ubiquitin-

proteasomal pathways [30;31]. Since the activation of FoxO1/3a is implicated in many types 

of muscle atrophy [32;33], we speculate that the activation of SCP4 could be a critical 

mechanism for muscle wasting occurring in other catabolic conditions, such as diabetes, 

sepsis and cancer cachexia.

What controls FoxO1/3a activity during muscle proteolysis? FoxO1/3a are quite stable 

proteins that continuously shuttle between the nucleus and cytoplasm and depend on cellular 

metabolic demand for achieving this dynamic equilibrium [34]. When responding to ligand-

activated signaling (e.g. insulin signaling), FoxO1/3a are phosphorylated by Akt and this 

reaction produces a docking site to bind with 14-3-3 proteins, preventing FoxO1/3a nuclear 

Liu et al. Page 6

Kidney Int. Author manuscript; available in PMC 2018 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



import [12]. When responding to ligand-independent signaling (e.g. AMPK signaling), 

FoxO1/3a are also phosphorylated, but in this case, the phosphorylation (at Ser 329) 

facilitates their nuclear import [35]. Alternatively, dephosphorylation of FoxO1/3a 

dramatically influences their subcellular localization and transcription activities. For 

example, certain cytoplasm phosphatases, such as PP2A, reportedly dephosphorylate 

FoxO1/3a and promote their nuclear translocation [36]. In the nucleus, there are also protein 

kinases that phosphorylate FoxO1/3a and facilitate their nuclear export. For example, 

nuclear Akt reportedly phosphorylates FoxO1/3a to facilitate their cytoplasmic 

translocation; Casein kinase-1 can phosphorylate FoxO1/3a (at S318 and S321) to directly 

promote their nuclear export [13]. However, whether there are antagonistic phosphatases to 

balance nuclear protein kinase remains unexplored. Our results suggested that SCP4 might 

be a nuclear antagonistic phosphatase, perhaps by directly dephosphorylating FoxO1/3a. In 

this manner, SCP4 inhibits the nuclear export signaling (NES) of FoxO1/3a and produces 

the dephosphorylation-dependent nuclear sequestration and hence transcriptional activity in 

response to catabolic stimuli.

Another important finding is that CKD stimulates SCP4 expression in muscle. To understand 

the underling mechanism, we treated muscle cells with proinflammatory cytokines and 

identified NF-κB to be responsible for SCP4 transcription (Fig. 6). These results partially 

explained why proinflammatory cytokines are able to simultaneously stimulate both MuRF1 

and Atrogin-1 / MAFbx expression: cytokines stimulate NF-κB to cause MuRF1expression, 

meanwhile, NF-κB promotes SCP4 expression to activate FoxO1/3a and hence Atrogin-1/

MAFbx expression. Another mechanism by which SCP4 up-regulates Atrogin-1 and 

MuRF-1 is increase in myostatin, because evidence suggests that myostatin upregulates 

atrophy-related ubiquitin ligases in a FoxO-dependent manner [8].

There are only few reports describing the strategy of phosphatase inhibition to prevent 

muscle wasting in catabolic conditions. For example, we reported that the phosphatase 

PTEN inhibition protects muscle wasting in CKD mice [3;4]; knockdown of protein 

phosphatase 2C-alpha (PP2Cα) protects angiotensin II-induced muscle wasting [37]. In the 

present study, we demonstrated a novel nuclear phosphatase, SCP4, which regulates muscle 

protein degradation by preventing FoxO1/3a nuclear translocation and activity. Upregulation 

of SCP4 enhances FoxO1/3a transcription activities by preventing their nuclear export; 

conversely, SCP4 inhibition in catabolic condition suppresses FoxO1/3a activity and hence 

muscle proteolysis in CKD. Since FoxO1/3a mediated autophagy/lysosomal and 

proteasomal pathways commonly involve different kinds of catabolism, the discovery of 

SCP4 as a regulator of FoxO1/3a signaling could lead to a new therapeutic intervention to 

prevent muscle wasting induced by CKD or other catabolic conditions.

Methods

CKD Models and Electroporation

Male C57BL/6 mice (12-week-old) were housed with 12 h light/dark cycles, and all animal 

procedures were approved in Baylor College of Medicine’s Institutional Animal Care and 

Use Committee. The CKD model was created using subtotal nephrectomy as previously 

described [4]. Six weeks after subtotal nephrectomy, CKD mice and sham controls 
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underwent electroporation and pair-feeding for 2 weeks. For pair-deeding, the amount of 

chow eaten by CKD mouse is fed to the sham-control mouse, this sequence is repeated for 

the duration of the experiment. For electroporation, 20 μg of plasmid (pXF-GFP-SCP4, 

pXF-GFP-only) or 0.01 nmol of siRNA (scramble siRNA or Smart Pool siRNA targeting 

SCP4, GE Dharmacon, Lafayette, CO) in 20 μl of phosphate-buffered saline were injected 

into TA muscles. In each mouse, the left TA muscle was received empty vector or scramble 

siRNA; the right TA muscle was received pXF-SCP4 or siSCP4. Electroporation was 

performed at 80 V for 10 pulses (100 ms each pulse, 200 ms intervals). Nuclei fractions 

from TA muscle were isolated as described [38].

Human Muscle Biopsies

During placement of a peritoneal dialysis catheter in CKD patients, the rectus abdominis 

muscle was biopsied, frozen at −80°C and stored until analyzed. Biopsy of this muscle was 

obtained from healthy subjects during abdominal hernia surgeries. The procedures were 

approved by the Ethical Committee of the Department of Internal Medicine of the 

University, Genoa, Italy, in accordance with the Helsinki declaration regarding ethics of 

human research [28].

Cell culture and Confocal living imaging

C2C12 cells were cultured in Dulbecco’s modified Eagle’s medium as described [39]. For 

overexpression or knockdown of SCP4, plasmid DNA (500 ng/ml) or siRNA (0.01nmol) 

was introduced into cells using an Invitrogen electroporation transfection system [40]. For 

monitoring FoxO1 nuclear export, C2C12 myoblasts were co-transfected with pXF-GFP-

SCP4 and pdsRED-Mono-N1-FoxO1 plasmids. After 24 h, cells were incubated in serum-

free for another 24 h. After the baseline image was taken using a Nikon A1-Rs Inverted 

Laser Scanning Microscope (set as 0 min at this point), insulin was added to the selected 

cells (2 ug/ml) and images were taken for 60 min at 15-min increments. To quantify the 

FoxO1-Red nuclear translocation, we measured the decrease of red fluorescent intensity in 

nuclear using NIH imageJ. Total of 12 cells in each group were examined. The pdsRED-

Mono-N1-FoxO1 was a gift from Domenico Accili (Addgene plasmid # 34678).

Protein synthesis and degradation using isotopic

C2C12 myotubes were incubated in media containing L-[3, 5–3H] tyrosine (5 μCi/ml; 

PerkinElmer, USA) for 24 h and following the procedures as described [39]. The released 

radioactivity was plotted as a percentage of total [3H] tyrosine incorporated into total cell 

proteins. The rates of proteolysis were calculated from the linear slopes between 24 and 36 

h.

RNA Preparation and Real-time qPCR

The procedures of RNA Preparation and Real-time qPCR were previously described [39]. 

All mRNA expressions were normalized to RPL39 [41;42] or beta-actin. The primer sets are 

listed in supplemental Figure 1c.
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RT² profiler PCR array analysis

Total RNA was reverse-transcribed to cDNA using the First Strand cDNA Kits (Qiagen 

Sciences, Germantown, MD). RT² Profiler™ PCR Array (Myogenesis & Myopathy, 

PAMM-099Z) was performed following the manufactory’s instruction (Qiagen Sciences).

Western blot analysis

The method of western blotting was previously described [4]. The antibodies GAPDH, beta-

tubulin, p-FoxO1 (Ser 256), p-FoxO3a (Ser 253), p-Akt and anti-SCP4 (CTDSPL2) were 

purchased from Cell Signaling Technology (Cambridge, MA).

Phospho-specific protein microarray analysis

Cell lysate (~100 μg) from C2C12 myotubes transfected with scramble siRNA or siSCP4 

were subjected to a Phospho Explorer antibody microarray (Full Moon Biosystems, 

Sunnyvale, CA) according to the manufacturer’s protocols.

Immunostaining and myofibers size measurement

After being fixed with 4% formaldehyde, the frozen tibialis anterior muscles’ sections (5 

μm) were subjected to immunostaining or immunohistochemistry as described [3]. For 

measuring myofiber diameter, C2C12 myotubes were transfected with adenovirus bearing 

GFP for 24 h to outline cells. Myotube images were captured using Nikon inverted 

microscope. Diameter was measured between two adjacent nuclei (avoiding regions of 

clustered nuclei) using National Institutes of Health (NIH) Image J 1.63 software. For a 

single myotuber, the average of 3~4 measurement was calculated as diameter of the 

myotube. Total 200 myotubes/well were examined and the mean of their diameters was 

represented as diameter of long multinucleate myotubes.

Promoter binding site and ChIP assay

The transcription factor binding site in promoter region of SCP4 (CTDSPL2) gene was 

obtained use online software provide by Qiangen website (Supplemental Figure 2a). We then 

analyzed ~2400 bp promoter region upstream of start codon (nm_6748574) using P-Match 

(1.0) program and identified three putative NF-κB binging sites (Supplemental Figure 2b). 

The chromatin immunoprecipitation (ChIP) assay was performed using a SimpleChIP Plus 

Enzymatic Chromatin IP Kit (Cell Signaling Technology) following the manufacturer’s 

instruction.

Statistical analysis

Results are presented as mean ± SEM. For experiments comparing two groups, we analyzed 

results by two-tail unpaired Student’s t-tests. When more than two groups were compared, 

two-way ANOVA followed by Newman-Keul’s test were used to analyze the differences 

between the two interested groups. Differences were considered statistically significant at p 

< 0.05 (*).
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Figure 1. SCP4 may regulate FoxOs and Smads signaling in skeletal muscle cells
a: Structural diagram of small c-terminal phosphatase 4 (SCP4); note that there are two 

nuclear location signaling (NLS) in its regulatory domain.

b: SCP4 mRNA expression in different tissues in mice (mean±SEM, n = 3).

c: Immunostaining revealed that SCP4 is mainly located in the nuclei of C2C12 myotubes 

(immunoflorescent staining, red: SCP4, blue: nuclear, scale bars: 20 μm) and myofibers 

from mice and human (DAB staining, brown: SCP4, Differential Interference Contrast 

(DIC) microscopy). Scale bars: 50 μm.

d: Phosphoproteome array in C2C12 myotubes with knockdown of SCP4. Data showing the 

fold change of induced phosphoproteins (yellow) and suppressed phosphoproteins (blue). 

The inserted immunoblots show siRNA knockdown efficiency.
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e: KEGG pathway analysis of induced phosphoprotein genes (fold change > 1.5) indicated 

that insulin (in red) and TGF-β ( in green) signaling pathways were influenced by SCP4 

knockdown.

f: The fold-change of phosphorylation sites in transcription factors FoxOs and Smads after 

SCP4 knockdown in C2C12 myotubes.
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Figure 2. Overexpression of SCP4 stimulates proteolysis in C2C12 myotubes
a: C2C12 myoblasts were transfected with control (CTL, GFP only) or SCP4-GFP plasmids. 

After cells being differentiated into myotubes, SCP4 overexpression was confirmed by 

immunoblot.

b: Overexpression of SCP4 caused a decrease in the diameter of C2C12 myotubes. Data 

were represented as mean±SEM and calculated from three independent experiments. *p < 

0.01 vs. CTL. Scale bars: 50 μm.

c: Protein synthesis was examined in C2C12 myotubes with or without SCP4 expression. 

The rate of protein synthesis was measured as the incorporation of [3H]-tyrosine; 

measurements were done in triplicate and independently repeated six times (mean±SEM, n 

=6).

d: Total proteolysis was assessed in C2C12 myotubes with or without SCP4 expression. 

Cells were incubated with [3H] tyrosine overnight after chasing with tyrosine and washing; 

the released radioactivity was plotted as a percentage of total [3H] tyrosine incorporated into 

cell proteins. The rates of proteolysis were calculated from the linear slopes between 16 and 

24 hr (mean±SEM, n = 6, **p < 0.01 vs. CTL).

e: SCP4 overexpression stimulates both lysosomal and proteasomal proteolysis in C2C12 

myotubes. Total proteolysis in control (Vehicle), proteasome related proteolysis (with 

lysosomal inhibitor concanamycin A) and lysosome related proteolysis (with proteosomal 

inhibitor Lactacystin) were shown (mean±SEM, n = 6 / group, **p < 0.01 vs. Vehicle

+ovSCP4).

f: SCP4 overexpression-stimulated proteolysis in C2C12 myotubes was suppressed by IGF-1 

(10 ng/ml) or BMP-2 (20 ng/ml). The differences in rates of proteolysis were calculated at 

12 h after adding IGF-1 or BMP-2 (mean±SEM, n = 6/group, **p < 0.01 vs. Vehicle

+ovSCP4, *p < 0.05 vs. Vehicle+ovSCP4. #p<0.05 vs. IGF-1+ovSCP4).
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Figure 3. SCP4 increases atrogenes expression via regulation of FoxO1 nuclear export
a: Heat map of Myogenesis & Myopathy PCR Array analysis in C2C12 myotubes with or 

without overexpression of SCP4. Arrows indicate the genes’ relevance to muscle proteolysis 

(n=3/group).

b: Statistical analysis of Myogenesis & Myopathy PCR Array as volcano plots. The fold-

changes in gene expression between control (CTL) and SCP4 overexpression (ovSCP4) is 

plotted on the x-axis, and false discovery rate (FDR)–adjusted significance is plotted on the 

y axis (–log10 scale). Upregulated and downregulated genes in each SCP4 group are 

indicated in yellow and blue respectively. The names of some relevant antibodies are shown. 

The horizontal line represents a p = 0.05.

c and d: The increase in Myostatin, Atrogin-1 and MuRF1 stimulated by SCP4 as confirmed 

by real-time quantitative PCR. The expression of MUSA1, an E3 ligase regulated by Smad1 

signaling, also increased (mean±SEM; n = 3).
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e: Immunoblots showed that SCP4 overexpression minimally influences the level of p-Akt in 

C2C12 myotubes

f: Overexpression of SCP4 in C2C12 myotubes significantly suppresses the levels of p-

FoxO1 and p-FoxO3a (mean±SEM, n = 3/group, **p < 0.01).

g: Confocal images of a representative experiment showing that SCP4 (green) sequestrates 

FoxO1 (red) in nucleus even upon insulin stimulation. C2C12 myoblasts were co-transfected 

with SCP4-GFP and FoxO1-RFP; after 24 h of serum-free incubation, the cells were treated 

with insulin (2 ug/ml), and the changes in the subcellular location of the FoxO1 was 

monitored with a confocal microscope. Asterisk indicated a cell expressing both SCP4-GFP 

and FoxO1-RFP. Arrow showed a cell that only expresses FoxO1-RFP.

h: FoxO1-RFP nuclear export was quantified as the attenuation of red fluorescent intensity 

in nuclei (** p<0.01 vs. Cells with ovSCP4. n=12). Scale bars: 25 μm.
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Figure 4. Knockdown of SCP4 blunts proteolysis stimulated by serum-depletion in C2C12 cells
a: C2C12 myotubes were transfected with scramble control siRNA (siCTL) or SCP4 

specific siRNA (siSCP4) for 48 h in DMEM containing 2% horse serum. The knockdown 

efficiency was confirmed by immunoblots.

b: At 48 h after transfection, C2C12 myotubes with siCTL or siSCP4 were switched to 

serum-free media (SF) for 36 h. The rates of proteolysis were calculated from the linear 

slopes between 24 and 36 h (mean±SEM, n = 3/group, *p < 0.05).

c: The mRNA level of Myostatin, Atrogin-1 and MuRF1 were assessed by RT-PCR in siCTL 

and siSCP4 myotubes, which were treated with 2% horse serum or serum-free media for 36 

h (mean±SEM, n = 3/group, **p < 0.01).

d: The levels of p-Akt, p-FoxO1, p-FoxO3a were assessed by immunoblots in siCTL and 

siSCP4 myotubes that had been treated with 2% horse or serum-free media for 36 h. Note 

that serum depletion decreases p-Akt in both siCTL and siSCP4 cells, but this response did 

not affect the p-FoxOs in myotubes with SCP4 knockdown

Liu et al. Page 18

Kidney Int. Author manuscript; available in PMC 2018 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. Forced expression of SCP4 in muscle results in myofiber atrophy in mice
a: TA muscles of normal C57B6J mice were transfected with GFP control (GFP) and SCP4-

GFP plasmids using electroporation. After 2 weeks, the total nuclear SCP4 (endogenous 

SCP4 plus SCP4-GFP) was assessed using immunoblots (n=5, **p<0.01); cryosections (6 

μm) were immunostained with anti-dystrophin antibody to outline myofibers (red 

fluorescence). Scale bars: 50 μm.

b: The distribution of myofiber sizes in TA muscles transfected with SCP4-GFP was shifted 

leftward compared with the result in TA muscles electroporated with CTL-GFP. Data were 

obtained from 5 animals in each group.

c: Overexpression of SCP4 in TA muscles resulted in a decrease in p-FoxO1 and p-FoxO3a. 

A statistical analysis of immunoblots was shown on the right (mean±SEM, n = 5/group, 

**p<0.01,

d: The mRNA level of Myostatin, Atrogin-1, MuRF1 and MUSA1 were examined using RT-

PCR in in TA muscles expressed GFP-CTL or GFP-SCP4 (mean±SEM, n = 5/group, **p < 

0.01, *p<0.05)
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Figure 6. CKD stimulates SCP4 expression via NF-κB signaling in muscles
a: The expression of SCP4 in the muscle of CKD mice was assessed by RT-PCR (left panel) 

and immunoblots (right panel). Data were presented as the mean±SEM (*p < 0.05, n = 5).

b: Representative differential interference contrast (DIC) image of SCP4 immunostaining in 

muscle of control (CTL) and CKD mice (DAB staining, brown: SCP4, Original 

magnification ×400).

c: The expression of SCP4 in muscles of controls and CKD patients was examined using 

immunoblotting (mean±SEM, n = 5, *p < 0.05).

d: Representative DIC image of SCP4 immunostaining in muscles of control subjects and 

patients with CKD (DAB staining, brown: SCP4. Scale bars: 50 μm).

e: In C2C12 myotubes, the expression of SCP4 was examined by RT-PCR (upper panel) and 

immunoblots (lower panel) treated with different kinds of cytokines. The mixture (Mix) is a 

combination of Il-6, LPS and IFN-γ, which was reportedly as a potent NF-κB signaling 

activator (mean±SEM, n = 3/group, **p < 0.01).
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f: The ChIP assay showed that the cytokine mix significantly stimulated NF-κB (p65) 

binding to SCP4 promoter; normal rabbit IgG was used as the mock control (mean±SEM; n 

= 3, *p < 0.05).

g and h: immunoblots showed that QNZ blocked SCP4 expression stimulated by the 

cytokine mix in C2C12 myotubes.
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Figure 7. SCP4 knockdown protects CKD-induced loss of muscle mass
a: TA muscles of control (CTL) and CKD mice were transfected with scramble, control 

siRNA (siCTL) or siRNA for SCP4 (siSCP4). The expression of SCP4 (mRNA and protein) 

was examined by RT-PCR (left penal) or immunoblots (right panel) at 12 days after 

electroporation (mean±SEM, n = 5 /group).

b: The weight of TA muscles (normalized by the tibia length) was significantly improved in 

CKD mice with SCP4 knockdown (mean±SEM, n = 5/group).

c and d: The cross-sectional area of myofibers in TA muscles of CTL and CKD mice 

following electroporation with siCTL and siSCP4 are shown. The distribution of myofiber 

sizes in muscles from sham-operated mice treated with siCTL and siSCP4 was comparable 

(upper panel, data were obtained from three animals in each group). In the muscles of CKD 

mice treated with siSCP4, the distribution of myofiber sizes was shifted toward the right. 

Data were obtained from five animals in each group. Scale bars: 50 μm.
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e: The expression of myostatin, Atrogin-1/MAFbx and MuRF1 mRNAs was accessed by 

RT-PCR. SCP4 knockdown suppressed Atrogin-1 and MuRF1 expression in the muscle of 

CKD mice (mean±SEM, n = 5/group).

f: p-FoxO1 (Ser 256) and p-FoxO3a (Ser 253) were examined using immunoblotting in 

muscles of sham-operated and CKD mice electroporated with siCTL or siSCP4. Along with 

a SCP4 knockdown, p-FoxO1 and p-FoxO3a levels were significantly increased in the 

muscle of CKD mice (mean±SEM, n = 5/group, *p < 0.05 vs. CKD+siSCP4).
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Figure 8. A summative diagram of SCP4 causes muscle wasting in CKD
CKD and associated inflammation activates NF-kB leading to SCP4 expression. In nucleus, 

SCP4 dephosphorylates FoxO1/3a and prevents FoxO1/3a nuclear export resulting in 

atrogrnes expression and increased muscle proteolysis. Therefore, inhibition of SCP4 

prevents muscle wasting via the suppression of FoxO1/3a.
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