1,850 research outputs found
Helioseismic Holography of an Artificial Submerged Sound Speed Perturbation and Implications for the Detection of Pre-Emergence Signatures of Active Regions
We use a publicly available numerical wave-propagation simulation of Hartlep
et al. 2011 to test the ability of helioseismic holography to detect signatures
of a compact, fully submerged, 5% sound-speed perturbation placed at a depth of
50 Mm within a solar model. We find that helioseismic holography as employed in
a nominal "lateral-vantage" or "deep-focus" geometry employing quadrants of an
annular pupil is capable of detecting and characterizing the perturbation. A
number of tests of the methodology, including the use of a plane-parallel
approximation, the definition of travel-time shifts, the use of different
phase-speed filters, and changes to the pupils, are also performed. It is found
that travel-time shifts made using Gabor-wavelet fitting are essentially
identical to those derived from the phase of the Fourier transform of the
cross-covariance functions. The errors in travel-time shifts caused by the
plane-parallel approximation can be minimized to less than a second for the
depths and fields of view considered here. Based on the measured strength of
the mean travel-time signal of the perturbation, no substantial improvement in
sensitivity is produced by varying the analysis procedure from the nominal
methodology in conformance with expectations. The measured travel-time shifts
are essentially unchanged by varying the profile of the phase-speed filter or
omitting the filter entirely. The method remains maximally sensitive when
applied with pupils that are wide quadrants, as opposed to narrower quadrants
or with pupils composed of smaller arcs. We discuss the significance of these
results for the recent controversy regarding suspected pre-emergence signatures
of active regions
Argon annealing of the oxygen-isotope exchanged manganite La_{0.8}Ca_{0.2}MnO_{3+y}
We have resolved a controversial issue concerning the oxygen-isotope shift of
the ferromagnetic transition temperature T_{C} in the manganite
La_{0.8}Ca_{0.2}MnO_{3+y}. We show that the giant oxygen-isotope shift of T_C
observed in the normal oxygen-isotope exchanged samples is indeed intrinsic,
while a much smaller shift observed in the argon annealed samples is an
artifact. The argon annealing causes the 18O sample to partially exchange back
to the 16O isotope due to a small 16O contamination in the Ar gas. Such a
contamination is commonly caused by the oxygen outgas that is trapped in the
tubes, connectors and valves. The present results thus umambiguously
demonstrate that the observed large oxygen isotope effect is an intrinsic
property of manganites, and places an important constraint on the basic physics
of these materials.Comment: 4 pages, 3 figures, submitted to PR
Helioseismology of Sunspots: A Case Study of NOAA Region 9787
Various methods of helioseismology are used to study the subsurface
properties of the sunspot in NOAA Active Region 9787. This sunspot was chosen
because it is axisymmetric, shows little evolution during 20-28 January 2002,
and was observed continuously by the MDI/SOHO instrument. (...) Wave travel
times and mode frequencies are affected by the sunspot. In most cases, wave
packets that propagate through the sunspot have reduced travel times. At short
travel distances, however, the sign of the travel-time shifts appears to depend
sensitively on how the data are processed and, in particular, on filtering in
frequency-wavenumber space. We carry out two linear inversions for wave speed:
one using travel-times and phase-speed filters and the other one using mode
frequencies from ring analysis. These two inversions give subsurface wave-speed
profiles with opposite signs and different amplitudes. (...) From this study of
AR9787, we conclude that we are currently unable to provide a unified
description of the subsurface structure and dynamics of the sunspot.Comment: 28 pages, 18 figure
Determining Absorption, Emissivity Reduction, and Local Suppression Coefficients inside Sunspots
The power of solar acoustic waves is reduced inside sunspots mainly due to
absorption, emissivity reduction, and local suppression. The coefficients of
these power-reduction mechanisms can be determined by comparing time-distance
cross-covariances obtained from sunspots and from the quiet Sun. By analyzing
47 active regions observed by SOHO/MDI without using signal filters, we have
determined the coefficients of surface absorption, deep absorption, emissivity
reduction, and local suppression. The dissipation in the quiet Sun is derived
as well. All of the cross-covariances are width corrected to offset the effect
of dispersion. We find that absorption is the dominant mechanism of the power
deficit in sunspots for short travel distances, but gradually drops to zero at
travel distances longer than about 6 degrees. The absorption in sunspot
interiors is also significant. The emissivity-reduction coefficient ranges from
about 0.44 to 1.00 within the umbra and 0.29 to 0.72 in the sunspot, and
accounts for only about 21.5% of the umbra's and 16.5% of the sunspot's total
power reduction. Local suppression is nearly constant as a function of travel
distance with values of 0.80 and 0.665 for umbrae and whole sunspots
respectively, and is the major cause of the power deficit at large travel
distances.Comment: 14 pages, 21 Figure
High-field magnetization study of the S = 1/2 antiferromagnetic Heisenberg chain [PM Cu(NO)(HO)] with a field-induced gap
We present a high-field magnetization study of the = 1/2
antiferromagnetic Heisenberg chain [PM Cu(NO)(HO)]. For
this material, as result of the Dzyaloshinskii-Moriya interaction and a
staggered tensor, the ground state is characterized by an anisotropic
field-induced spin excitation gap and a staggered magnetization. Our data
reveal the qualitatively different behavior in the directions of maximum and
zero spin excitation gap. The data are analyzed via exact diagonalization of a
linear spin chain with up to 20 sites and on basis of the Bethe ansatz
equations, respectively. For both directions we find very good agreement
between experimental data and theoretical calculations. We extract the magnetic
coupling strength along the chain direction to 36.3(5) K and determine
the field dependence of the staggered magnetization component .Comment: 5 pages, 2 figures (minor changes to manuscript and figures
Differential regulation of effector- and central-memory responses to Toxoplasma gondii infection by IL-12 revealed by tracking of Tgd057-specific CD8+ T cells
10.1371/journal.ppat.1000815PLoS Pathogens6
On the effects of the magnetic field and the isotopic substitution upon the infrared absorption of manganites
Employing a variational approach that takes into account electron-phonon and
magnetic interactions in perovskites with , the
effects of the magnetic field and the oxygen isotope substitution on the phase
diagram, the electron-phonon correlation function and the infrared absorption
at are studied. The lattice displacements show a strong correlation
with the conductivity and the magnetic properties of the system. Then the
conductivity spectra are characterized by a marked sensitivity to the external
parameters near the phase boundary.Comment: 10 figure
Modeling the Subsurface Structure of Sunspots
While sunspots are easily observed at the solar surface, determining their
subsurface structure is not trivial. There are two main hypotheses for the
subsurface structure of sunspots: the monolithic model and the cluster model.
Local helioseismology is the only means by which we can investigate
subphotospheric structure. However, as current linear inversion techniques do
not yet allow helioseismology to probe the internal structure with sufficient
confidence to distinguish between the monolith and cluster models, the
development of physically realistic sunspot models are a priority for
helioseismologists. This is because they are not only important indicators of
the variety of physical effects that may influence helioseismic inferences in
active regions, but they also enable detailed assessments of the validity of
helioseismic interpretations through numerical forward modeling. In this paper,
we provide a critical review of the existing sunspot models and an overview of
numerical methods employed to model wave propagation through model sunspots. We
then carry out an helioseismic analysis of the sunspot in Active Region 9787
and address the serious inconsistencies uncovered by
\citeauthor{gizonetal2009}~(\citeyear{gizonetal2009,gizonetal2009a}). We find
that this sunspot is most probably associated with a shallow, positive
wave-speed perturbation (unlike the traditional two-layer model) and that
travel-time measurements are consistent with a horizontal outflow in the
surrounding moat.Comment: 73 pages, 19 figures, accepted by Solar Physic
A Green's function approach to transmission of massless Dirac fermions in graphene through an array of random scatterers
We consider the transmission of massless Dirac fermions through an array of
short range scatterers which are modeled as randomly positioned -
function like potentials along the x-axis. We particularly discuss the
interplay between disorder-induced localization that is the hallmark of a
non-relativistic system and two important properties of such massless Dirac
fermions, namely, complete transmission at normal incidence and periodic
dependence of transmission coefficient on the strength of the barrier that
leads to a periodic resonant transmission. This leads to two different types of
conductance behavior as a function of the system size at the resonant and the
off-resonance strengths of the delta function potential. We explain this
behavior of the conductance in terms of the transmission through a pair of such
barriers using a Green's function based approach. The method helps to
understand such disordered transport in terms of well known optical phenomena
such as Fabry Perot resonances.Comment: 22 double spaced single column pages. 15 .eps figure
Magnetoelectric ordering of BiFeO3 from the perspective of crystal chemistry
In this paper we examine the role of crystal chemistry factors in creating
conditions for formation of magnetoelectric ordering in BiFeO3. It is generally
accepted that the main reason of the ferroelectric distortion in BiFeO3 is
concerned with a stereochemical activity of the Bi lone pair. However, the lone
pair is stereochemically active in the paraelectric orthorhombic beta-phase as
well. We demonstrate that a crucial role in emerging of phase transitions of
the metal-insulator, paraelectric-ferroelectric and magnetic disorder-order
types belongs to the change of the degree of the lone pair stereochemical
activity - its consecutive increase with the temperature decrease. Using the
structural data, we calculated the sign and strength of magnetic couplings in
BiFeO3 in the range from 945 C down to 25 C and found the couplings, which
undergo the antiferromagnetic-ferromagnetic transition with the temperature
decrease and give rise to the antiferromagnetic ordering and its delay in
regard to temperature, as compared to the ferroelectric ordering. We discuss
the reasons of emerging of the spatially modulated spin structure and its
suppression by doping with La3+.Comment: 18 pages, 5 figures, 3 table
- …
