25 research outputs found

    Arabidopsis blue light receptor phototropin 1 undergoes blue light-induced activation in membrane microdomains

    Get PDF
    Phototropin (phot)-mediated signaling initiated by blue light (BL) plays a critical role in optimizing photosynthetic light capture at the plasma membrane (PM) in plants. However, the mechanisms underlying the regulation of phot activity at the PM in response to BL remain largely unclear. In this study, by single-particle tracking and step-wise photobleaching analysis we demonstrated that in the dark phot1-GFP proteins remain in an inactive state and mostly present as a monomer. The phot1-GFP diffusion rate and its dimerization increased in a dose-dependent manner in response to BL. In contrast, BL did not affect the lateral diffusion of kinase-inactive phot1 -GFP, whereas it did enhance its dimerization, suggesting that phot1 dimerization is independent of its phosphorylation. Förster resonance energy transfer-fluorescence lifetime imaging microscopy (FRET-FLIM) analysis revealed that the interaction between phot1-GFP and AtRem1.3-mCherry was enhanced along with increased time of BL treatment. However, the BL-dependent interaction was not obvious in plants co-expressing phot1 -GFP and AtRem1.3-mCherry, implicating that BL facilitated the translocation of functional phot1-GFP into AtRem1.3-labeled microdomains to activate phot-mediated signaling. Conversely, sterol depletion attenuated phot1-GFP dynamics, dimerization, and phosphorylation. Taken together, these results indicate that membrane microdomains act as an organizing platform essential for proper function of activated phot1 at the PM

    Ultra-High Resolution 3D Imaging of Whole Cells.

    Get PDF
    Fluorescence nanoscopy, or super-resolution microscopy, has become an important tool in cell biological research. However, because of its usually inferior resolution in the depth direction (50-80 nm) and rapidly deteriorating resolution in thick samples, its practical biological application has been effectively limited to two dimensions and thin samples. Here, we present the development of whole-cell 4Pi single-molecule switching nanoscopy (W-4PiSMSN), an optical nanoscope that allows imaging of three-dimensional (3D) structures at 10- to 20-nm resolution throughout entire mammalian cells. We demonstrate the wide applicability of W-4PiSMSN across diverse research fields by imaging complex molecular architectures ranging from bacteriophages to nuclear pores, cilia, and synaptonemal complexes in large 3D cellular volumes

    Impact of Climate Change on the Water Requirements of Oat in Northeast and North China

    No full text
    Crop water requirements are directly affected by climatic variability, especially for crops grown in the areas which are sensitive to climatic change. Based on the SIMETAW model and a long-term meteorological dataset, we evaluated the spatiotemporal variations of climatic change impacts on water requirement of oat in North and Northeast China. The results indicated that effective rainfall showed an increasing trend, while the crop water requirement and irrigation demand presented decreasing trends over the past decades. The water requirement of oat showed significant longitudinal and latitudinal spatial variations, with a downtrend from north to south and uptrend from east to west. Climatic factors have obviously changed in the growth season of oat, with upward trends in the average temperature and precipitation, and downward trends in the average wind speed, sunshine hours, relative humidity, and solar radiation. Declines in solar radiation and wind speed, accompanied with the increase in effective rainfall, have contributed to the reduced crop water requirement over these decades. Given the complex dynamic of climate change, when studying the impact of climate change on crop water requirements, we should not only consider single factors such as temperature or rainfall, we need to analyze the comprehensive effects of various climatic factors

    Uncovering diffusive states of the yeast proton pump, Pma1, and how labeling method can change diffusive behavior

    Full text link
    We present and analyze video-microscopy-based single-particle-tracking measurements of the budding yeast (Saccharomyces cerevisiae) membrane protein, Pma1, fluorescently-labeled either by direct fusion to the switchable fluorescent protein, mEos3.2, or by a novel, light-touch, labeling scheme, in which a 5 amino acid tag is directly fused to the C-terminus of Pma1, which then binds mEos3.2. The diffusivity distributions of these two populations of single particle tracks differ significantly, demonstrating that labeling method can be an important determinant of diffusive behavior. We also applied perturbation expectation maximization (pEMv2) [Physical Review E 94, 052412 (2016)], which sorts trajectories into the statistically-optimum number of diffusive states. For both TRAP-labeled Pma1 and Pma1-mEos3.2, pEMv2 sorts the tracks into two diffusive states: an essentially immobile state and a more mobile state. However, the mobile fraction of Pma1-mEos3.2 tracks is much smaller (0.1) than the mobile fraction of TRAP-labeled Pma1 tracks (0.5). In addition, the diffusivity of Pma1-mEos3.2's mobile state is several times smaller than the diffusivity of TRAP-labeled Pma1's mobile state. To critically assess pEMv2's performance, we compare the diffusivity and covariance distributions of the experimental pEMv2-sorted populations to corresponding theoretical distributions, assuming that Pma1 displacements realize a Gaussian random process. The experiment-theory comparisons for both the TRAP-labeled Pma1 and Pma1-mEos3.2 reveal good agreement, bolstering the pEMv2 approach.Comment: 19 pages, 14 figure

    Dual Sensing of Physiologic pH and Calcium by EFCAB9 Regulates Sperm Motility

    No full text
    Varying pH of luminal fluid along the female reproductive tract is a physiological cue that modulates sperm motility. CatSper is a sperm-specific, pH-sensitive calcium channel essential for hyperactivated motility and male fertility. Multi-subunit CatSper channel complexes organize linear Ca2+ signaling nanodomains along the sperm tail. Here, we identify EF-hand calcium-binding domain-containing protein 9 (EFCAB9) as a bifunctional, cytoplasmic machine modulating the channel activity and the domain organization of CatSper. Knockout mice studies demonstrate that EFCAB9, in complex with the CatSper subunit, CATSPERζ, is essential for pH-dependent and Ca2+-sensitive activation of the CatSper channel. In the absence of EFCAB9, sperm motility and fertility is compromised, and the linear arrangement of the Ca2+ signaling domains is disrupted. EFCAB9 interacts directly with CATSPERζ in a Ca2+-dependent manner and dissociates at elevated pH. These observations suggest that EFCAB9 is a long-sought, intracellular, pH-dependent Ca2+ sensor that triggers changes in sperm motility
    corecore