15 research outputs found

    Displacement and Deformation of the First Tunnel Lining During the Second Tunnel Construction

    Get PDF
    A three-dimensional twin tunnels scale model was established utilizing the discrete element method (DEM) with PFC3D. This model aims to investigate the displacement (in horizontal and vertical directions) and deformation of the first tunnel lining in four different cases which the clear distance of twin tunnels are 5, 10, 15 and 20 m during the second tunnel construction process. The numerical results indicate that the clear distance between twin tunnels and the distance between the measurement points of the first tunnel and the excavation area of the second tunnel are two most critical factors that influence the displacement and deformation of the first tunnel lining. Meanwhile, the soil arching effect, gravity, water pressure and lateral pressure also have an impact on the behavior of the first tunnel. The maximum disturbance of horizontal and vertical displacements occurred in the time points of finishing of the second tunnel. However, the horizontal displacement of the first tunnel is much more sensitive to the vertical displacement. The first tunnel turns to the right and down in direction while having an anticlockwise rotation (φ) during the process of construction of the second tunnel. In addition, the displacement and deformation of the lining of the first tunnel are critical to monitor, and the necessary precautions should be taken to decrease the risk of craze. In conclusion, the influence of the second tunnel excavation on the first tunnel lining could be neglected when their distance is more than 15 m

    A Mathematical Model for Ballast Tamping Decision Making in Railway Tracks

    Get PDF
    Ballast tamping is considered as an important maintenance process for railway infrastructures and has a large influence on the capacity of any railway networks. But optimizing the plan of that process is a complex problem with a high cost. This paper discusses optimizing tamping operations on ballasted tracks to improve the track geometry and reduce the total maintenance cost. A mathematical model for this problem in the literature is improved here by including the restriction on the resources (tools, workers and budget) in the model and including constant/variable values for track possession cost and available resources. The optimal solutions obtained for all instances are found by using the global optimization. Besides, a numerical study is presented to test and evaluate the model performance. The results show that the proposed model can be adopted by the infrastructure manager (IM) to make suitable tamping scheduling decisions under normal or private conditions; however, the private conditions lead to an increase of the final cost compared to that of the normal ones. Doi: 10.28991/cej-2020-03091601 Full Text: PD

    Prediction of Ground Settlement Induced by Slurry Shield Tunnelling in Granular Soils

    Get PDF
    Underground structures play an important role in achieving the requirements of rapid urban development such as tunnels, parking garages, facilities, etc. To achieve what is needed, new transportation methods have been proposed to solve traffic congestion problems by using of high-speed railway and subway tunnels. One of the issues in urban spaces due to tunnel excavation is considerable surface settlements that also induce problems for surface structures. There are a variety of published relationships concerned with field measurements and theoretical approaches to evaluating the amount of the maximum surface settlement value due to tunneling. This paper studies the ground surface settlement caused by the Greater Cairo Metro – Line 3 - Phase-1. This project was constructed by a slurry shield Tunnel Boring Machine (TBM). Therefore, this work consists of two parts. The first part presents the details of the project and monitoring results field and laboratory geotechnical investigations in order to determine the soil properties. The second part is to the comparison between the field measurements and theoretical approaches for surface settlement due to tunneling construction. At the end of the works, the results show that the more convenient methods which approach the field measurements, and the major transverse settlement occurs within the area about 2.6 times the diameter of the tunnel excavation. Doi: 10.28991/cej-2020-03091617 Full Text: PD

    Discrete element analysis of the excavation effect of cross-river tunnel on the surroundings

    No full text
    Cross-river tunnel as one of the underground constructions is complicated during its construction. For stability of tunnel excavation, it is emergency to analyze the dynamic characteristics of tunnel deformation under high water pressure. Therefore, a cross-river tunnel model is proposed based on DEM in this paper. Stiffness of particles decreases during excavation process which is as one of excavation methods. Porosity ratio of original porosity over its value at different excavation time has been considered. Radial displacements of particles at different angle around the tunnel are detected during excavation process. It shows that large deformation occurs at the vault of the excavation zone which accompanies with large radial displacement. The upper half of the tunnel performs larger deformation than the lower half part which results in many cracks in the concrete lining, the high water pressure may play an crucial role in it

    Influence of Cairo Metro Tunnel Excavation on Pile Deep Foundation of the Adjacent Underground Structures: Numerical Study

    No full text
    Day by day the call to solve traffic congestion problems is increasing. Subway tunnels and high-speed railway are commonly used for transportation. Therefore, tunnel construction induces soil movement, which in turn affects the stability and integrity of adjacent existing buildings. A series of numerical simulations have been established to investigate the effects of tunnel construction of the Greater Cairo Metro–Line 3-Phase-1 on adjacent pile cap foundations of Garage El-Attaba building. Many parameters have been investigated such as tunnel diameter and the distance between pile and tunnel at different tunnel axis and deep and shallow tunnel. After thorough analysis of the results’ simulation, it was found that the tunneling induces additional axial forces and bending moment as well as increasing axial settlement and lateral deflection. Moreover, the results obtained from the parametric study for the shallow and deep tunnel show that the tunnel depth has a much significant effect on piles responses. Finally, the tunnel diameter has an impact on pile responses as well as the pile cap foundation influenced by the tunnel when the tunnel is in very close vicinity of the pile, and its effect is modest to negligible if located far away from the buildings

    Comparison of Dynamic Characteristics between Small and Super-Large Diameter Cross-River Twin Tunnels under Train Vibration

    No full text
    Train vibration from closely aligned adjacent tunnels could cause safety concerns, especially given the soaring size of the tunnel diameter. This paper established a two-dimensional discrete element model (DEM) of small (d = 6.2 m) and super-large (D = 15.2 m) diameter cross-river twin tunnels and discussed the dynamic characteristics of adjacent tunnels during the vibration of a train that runs through the tunnel at a speed of 120 km/h. Results in the D tunnel showed that the horizontal walls have the same horizontal displacement (DH) and the vertical walls have the same vertical displacement (DV). The stress state of the surroundings of the D tunnel is the decisive factor for DH, and the distance from the vibration point to the measurement point is the decisive factor for DV. Results in the comparison of the d and D tunnels showed that the D tunnel is more stable than the d tunnel with respect to two aspects: the time the tunnel reaches the equilibrium state and the vibration amplitude of the structure’s dynamic and static responses. The dynamic characteristic of the d and D tunnel is significantly different. This research is expected to guide the design and construction of large diameter twin tunnels

    Effect of N and aging treatment on precipitation behavior, mechanical properties and wear resistance of Ti–V–Nb alloyed high manganese steel

    No full text
    To address the limited wear resistance attributed to the insufficient initial mechanical properties observed in high manganese steel (HM) wear behavior, we introduced nitrogen (N) to modulate precipitation behavior, thereby elevating material mechanical properties and wear resistance, and this was further enhanced through aging treatments. Due to the nitrogen addition, the precipitates transformed from MC to M(C, N), concurrently triggering a substantial increase and refinement in precipitates. As a result, nitrogenous high manganese steel (NHM) exhibited improved strength, toughness, and work-hardening capacity. The enhancements amounted to 67–77 MPa in yield strength and 5.3–9.3 % in elongation, with these improvements becoming more pronounced after extending the aging treatment. Under impact abrasive wear conditions, the NHM demonstrated the development of a stable work-hardened layer. The NHM hardened layer rapidly reached a depth of 4–6 mm, effectively resisting abrasive embedding and suppressing matrix abrasion. This transitioned the primary wear mechanisms from cutting and plowing to plastic deformation and micro-spalling. Additionally, NHM's great uniformity and toughness-plasticity played a crucial role in preventing the initiation and propagation of fatigue cracks and fatigue sheds

    A highly sensitive bead-based flow cytometric competitive binding assay to detect SARS-CoV-2 neutralizing antibody activity

    No full text
    Accurate detection of SARS-CoV-2 neutralizing antibody (nAb) is critical for assessing the immunity levels after virus infection or vaccination. As fast, cost-effective alternatives to viral infection-based assays, competitive binding (CB) assays were developed to quantitate nAb by monitoring the ability of sera to inhibit the binding of viral spike (S) protein to the angiotensin converting enzyme 2 (ACE2) receptor. Herein, we established a bead-based flow cytometric CB assay and tested the detection performance of six combination models, i.e. immobilized ACE2 and soluble Fc-tagged S1 subunit of S protein (iACE2/S1-Fc), immobilized ACE2 and soluble Fc-tagged receptor binding domain (RBD) of S protein (iACE2/RBD-Fc), immobilized S1 and soluble Fc-tagged ACE2 (iS1/ACE2-Fc), immobilized S1 and soluble His-tagged ACE2 (iS1/ACE2-His), immobilized RBD and soluble Fc-tagged ACE2 (iRBD/ACE2-Fc), and immobilized RBD and soluble His-tagged ACE2 (iRBD/ACE2-His). Using SARS-CoV-2 monoclonal antibodies and sera of convalescent COVID-19 patients and vaccinated subjects, the combination models iACE2/RBD-Fc, iACE2/S1-Fc and iS1/ACE2-His were identified to be able to specifically detect SARS-CoV-2 nAb, among which iACE2/RBD-Fc model showed the highest sensitivity, superior to a commercial SARS-CoV-2 surrogate virus neutralization test (sVNT) ELISA kit. Further studies demonstrated that the sensitivity and specificity of CB assays were affected by the tag of ACE2, type of spike and method of measuring binding rate between ACE2 and spike. Moreover, the iACE2/RBD-Fc model showed good performance in detecting kinetic development of nAb against both the prototype SARS-CoV-2 strain and an omicron variant of SARS-CoV-2 in people immunized by an inactivated SARS-CoV-2 vaccine, and the results of iACE2/RBD-Fc model are correlated well with those of live virus-based and pseudovirus-based neutralization tests, demonstrating the potential to be developed into a highly sensitive, specific, versatile and high-throughput method for detecting SARS-CoV-2 nAb in clinical practice
    corecore