337 research outputs found

    Artificial intelligence of cultivating the communication ability of college students majoring in accounting in the context of the Internet

    Get PDF
    With the impact of the development of artificial intelligence on the accounting industry, the society puts forward new requirements for the professional quality of accountants, especially the communication ability. This change leads to the communication ability of accounting students can not meet the changing needs of social development. In order to study this difference, this paper, in the form of Web information analysis and questionnaire survey, analyse the problems existing in the cultivation of communication ability of college students majoring in accounting in the era of artificial intelligence from three aspects - market demand, talent cultivation and cultivation subject, and puts forward some targeted suggestions on the curriculum and teaching content of colleges and universities according to the industry and market demand, so as to cultivate the students’ communication ability Cultivate modern accounting professionals to meet the needs of the market

    The isolation and characterization of twelve novel microsatellite loci from Haliotis ovina

    Get PDF
    Twelve (12) microsatellite loci were developed from Haliotis ovina by magnetic bead hybridization method. Genetic variability was assessed using 30 individuals from three wild populations. The number of alleles per locus was from 2 to 5 and polymorphism information content was from 0.1228 to 0.6542. The observed and expected heterozygosities ranged from 0.0000 to 0.7778 and 0.1288 to 0.6310, respectively. These loci should provide useful information for genetic studies such as genetic diversity, pedigree analysis, construction of genetic linkage maps and marker-assisted selection breeding in H. ovina.Key words: Genetic markers, Haliotis ovina, microsatellites

    Synthesis and Electrochemical Performance of Polyacrylonitrile Carbon Nanostructure Microspheres for Supercapacitor Application

    Get PDF
    Polyacrylonitrile (PAN) carbon nanostructure microspheres (CNM) with the average particle size of 200 nm were prepared in the range of 500 to 800°C. The precursors of CNM were obtained through soap-free emulsion polymerization followed by freeze drying, oxidative stabilization, and half-carbonization. KOH was employed as the activation agent of the precursor material, and the ratio between KOH and the precursor was selected as 2 : 1. The element content, pore structure, nitrogen-containing functional groups, and microstructure characterization were characterized via elemental analysis, N2 adsorption at low temperature, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM), and the electrochemical properties were examined as well. The results revealed that the CNM displayed specific surface area as high as 2134 m2/g and the total pore volume could reach 2.01 cm3/g when the activation temperature was 700°C. Furthermore, its specific capacitance in 3 M KOH and 1 M organic electrolyte could reach 311 F/g and 179 F/g, respectively. And, also, abundant functional groups of N-5 and N-6 were rich in the surface of the material, which could cause Faraday reaction and got the increasing specific capacitance via improvement of the wettability of the electrode material

    Denatured-State Conformation As Regulator of Amyloid Assembly Pathways?

    Get PDF
    Additional file 1: Figure S1. Disease incidence of ginger bacterial wilt. Figure S2. The rarefaction curve of samples. Table S1. Soil Physicochemical Data. Table S2. The top ten Phyla of samples. Dataset S1. Discriminative taxa analyzed by LEfSe in all samples

    Toward a mechanistic understanding of microfluidic droplet-based extraction and separation of lanthanides

    Get PDF
    Droplet-based microfluidic extraction is a promising way for effective lanthanides extraction due to its outstanding mass transfer performance. The separation process can be greatly enhanced with the droplet-based microfluidic extraction technique. However, the interactions between mass transfer, microfluidic dynamics and extraction kinetics are still unclear, which has hindered further manipulation on microfluidic extraction to boost extraction performance. In this study, the mechanisms of microfluidic droplet-based extraction and separation intensification of lanthanides are for the first time unveiled by using a numerical simulation model. The limiting factors for the performance of droplet-based microfluidic extraction are identified through a model-based parametric analysis. The numerical analyses provide a comprehensive understanding of droplet-based microfluidic extraction systems and offer operation and optimization guidelines for future research in this area

    Hybrid multi-strategy chaos somersault foraging chimp optimization algorithm research

    Get PDF
    To address the problems of slow convergence speed and low accuracy of the chimp optimization algorithm (ChOA), and to prevent falling into the local optimum, a chaos somersault foraging ChOA (CSFChOA) is proposed. First, the cat chaotic sequence is introduced to generate the initial solutions, and then opposition-based learning is used to select better solutions to form the initial population, which can ensure the diversity of the algorithm at the beginning and improve the convergence speed and optimum searching accuracy. Considering that the algorithm is likely to fall into local optimum in the final stage, by taking the optimal solution as the pivot, chimps with better adaptation at the mirror image position replace chimps from the original population using the somersault foraging strategy, which can increase the population diversity and expand the search scope. The optimization search tests were performed on 23 standard test functions and CEC2019 test functions, and the Wilcoxon rank sum test was used for statistical analysis. The CSFChOA was compared with the ChOA and other improved intelligent optimization algorithms. The experimental results show that the CSFChOA outperforms most of the other algorithms in terms of mean and standard deviation, which indicates that the CSFChOA performs well in terms of the convergence accuracy, convergence speed and robustness of global optimization in both low-dimensional and high-dimensional experiments. Finally, through the test and analysis comparison of two complex engineering design problems, the CSFChOA was shown to outperform other algorithms in terms of optimal cost. For the design of the speed reducer, the performance of the CSFChOA is 100% better than other algorithms in terms of optimal cost; and, for the design of a three-bar truss, the performance of the CSFChOA is 6.77% better than other algorithms in terms of optimal cost, which verifies the feasibility, applicability and superiority of the CSFChOA in practical engineering problems

    Stemness And Chemotherapeutic Drug Resistance Induced By Eif5a2 Overexpression In Esophageal Squamous Cell Carcinoma

    Get PDF
    Esophageal squamous cell carcinoma (ESCC) is one of the most lethal malignancies of the digestive tract in East Asian countries. Multimodal therapies, including adjuvant chemotherapy and neo-adjuvant chemotherapy, have become more often used for patients with advanced ESCC. However, the chemotherapy effect is often limited by patients' drug resistance. This study demonstrated that EIF5A2 (eukaryotic translation initiation factor 5A2) overexpression induced stemness and chemoresistance in ESCC cells. We showed that EIF5A2 overexpression in ESCC cells resulted in increased chemoresistance to 5-fluorouracil (5-FU), docetaxel and taxol. In contrast, shRNAs suppressing eIF5A2 increased tumor sensitivity to these chemotherapeutic drugs. In addition, EIF5A2 overexpression was correlated with a poorer overall survival in patients with ESCC who underwent taxane-based chemotherapy after esophagectomy (P > 0.05). Based on these results, we suggest that EIF5A2 could be a predictive biomarker for selecting appropriate chemo-treatment for ESCC patients and EIF5A2 inhibitors might be considered as combination therapy to enhance chemosensitivity in patients with ESCC.published_or_final_versio

    Overexpressing the Sedum alfredii Cu/Zn Superoxide Dismutase Increased Resistance to Oxidative Stress in Transgenic Arabidopsis

    Get PDF
    Superoxide dismutase (SOD) is a very important reactive oxygen species (ROS)-scavenging enzyme. In this study, the functions of a Cu/Zn SOD gene (SaCu/Zn SOD), from Sedum alfredii, a cadmium (Cd)/zinc/lead co-hyperaccumulator of the Crassulaceae, was characterized. The expression of SaCu/Zn SOD was induced by Cd stress. Compared with wild-type (WT) plants, overexpression of SaCu/Zn SOD gene in transgenic Arabidopsis plants enhanced the antioxidative defense capacity, including SOD and peroxidase activities. Additionally, it reduced the damage associated with the overproduction of hydrogen peroxide (H2O2) and superoxide radicals (O2•-). The influence of Cd stress on ion flux across the root surface showed that overexpressing SaCu/Zn SOD in transgenic Arabidopsis plants has greater Cd uptake capacity existed in roots. A co-expression network based on microarray data showed possible oxidative regulation in Arabidopsis after Cd-induced oxidative stress, suggesting that SaCu/Zn SOD may participate in this network and enhance ROS-scavenging capability under Cd stress. Taken together, these results suggest that overexpressing SaCu/Zn SOD increased oxidative stress resistance in transgenic Arabidopsis and provide useful information for understanding the role of SaCu/Zn SOD in response to abiotic stress
    • …
    corecore