105 research outputs found

    Efficient Spatial Keyword Search in Trajectory Databases

    Full text link
    An increasing amount of trajectory data is being annotated with text descriptions to better capture the semantics associated with locations. The fusion of spatial locations and text descriptions in trajectories engenders a new type of top-kk queries that take into account both aspects. Each trajectory in consideration consists of a sequence of geo-spatial locations associated with text descriptions. Given a user location λ\lambda and a keyword set ψ\psi, a top-kk query returns kk trajectories whose text descriptions cover the keywords ψ\psi and that have the shortest match distance. To the best of our knowledge, previous research on querying trajectory databases has focused on trajectory data without any text description, and no existing work has studied such kind of top-kk queries on trajectories. This paper proposes one novel method for efficiently computing top-kk trajectories. The method is developed based on a new hybrid index, cell-keyword conscious B+^+-tree, denoted by \cellbtree, which enables us to exploit both text relevance and location proximity to facilitate efficient and effective query processing. The results of our extensive empirical studies with an implementation of the proposed algorithms on BerkeleyDB demonstrate that our proposed methods are capable of achieving excellent performance and good scalability.Comment: 12 page

    Efficient location-based spatial keyword query processing

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Hierarchical LSTM with Adjusted Temporal Attention for Video Captioning

    Full text link
    Recent progress has been made in using attention based encoder-decoder framework for video captioning. However, most existing decoders apply the attention mechanism to every generated word including both visual words (e.g., "gun" and "shooting") and non-visual words (e.g. "the", "a"). However, these non-visual words can be easily predicted using natural language model without considering visual signals or attention. Imposing attention mechanism on non-visual words could mislead and decrease the overall performance of video captioning. To address this issue, we propose a hierarchical LSTM with adjusted temporal attention (hLSTMat) approach for video captioning. Specifically, the proposed framework utilizes the temporal attention for selecting specific frames to predict the related words, while the adjusted temporal attention is for deciding whether to depend on the visual information or the language context information. Also, a hierarchical LSTMs is designed to simultaneously consider both low-level visual information and high-level language context information to support the video caption generation. To demonstrate the effectiveness of our proposed framework, we test our method on two prevalent datasets: MSVD and MSR-VTT, and experimental results show that our approach outperforms the state-of-the-art methods on both two datasets

    TLM: Token-Level Masking for Transformers

    Full text link
    Structured dropout approaches, such as attention dropout and DropHead, have been investigated to regularize the multi-head attention mechanism in Transformers. In this paper, we propose a new regularization scheme based on token-level rather than structure-level to reduce overfitting. Specifically, we devise a novel Token-Level Masking (TLM) training strategy for Transformers to regularize the connections of self-attention, which consists of two masking techniques that are effective and easy to implement. The underlying idea is to manipulate the connections between tokens in the multi-head attention via masking, where the networks are forced to exploit partial neighbors' information to produce a meaningful representation. The generality and effectiveness of TLM are thoroughly evaluated via extensive experiments on 4 diversified NLP tasks across 18 datasets, including natural language understanding benchmark GLUE, ChineseGLUE, Chinese Grammatical Error Correction, and data-to-text generation. The results indicate that TLM can consistently outperform attention dropout and DropHead, e.g., it increases by 0.5 points relative to DropHead with BERT-large on GLUE. Moreover, TLM can establish a new record on the data-to-text benchmark Rotowire (18.93 BLEU). Our code will be publicly available at https://github.com/Young1993/tlm.Comment: 13 pages. Accepted by EMNLP2023 main conferenc

    Co-movement Pattern Mining from Videos

    Full text link
    Co-movement pattern mining from GPS trajectories has been an intriguing subject in spatial-temporal data mining. In this paper, we extend this research line by migrating the data source from GPS sensors to surveillance cameras, and presenting the first investigation into co-movement pattern mining from videos. We formulate the new problem, re-define the spatial-temporal proximity constraints from cameras deployed in a road network, and theoretically prove its hardness. Due to the lack of readily applicable solutions, we adapt existing techniques and propose two competitive baselines using Apriori-based enumerator and CMC algorithm, respectively. As the principal technical contributions, we introduce a novel index called temporal-cluster suffix tree (TCS-tree), which performs two-level temporal clustering within each camera and constructs a suffix tree from the resulting clusters. Moreover, we present a sequence-ahead pruning framework based on TCS-tree, which allows for the simultaneous leverage of all pattern constraints to filter candidate paths. Finally, to reduce verification cost on the candidate paths, we propose a sliding-window based co-movement pattern enumeration strategy and a hashing-based dominance eliminator, both of which are effective in avoiding redundant operations. We conduct extensive experiments for scalability and effectiveness analysis. Our results validate the efficiency of the proposed index and mining algorithm, which runs remarkably faster than the two baseline methods. Additionally, we construct a video database with 1169 cameras and perform an end-to-end pipeline analysis to study the performance gap between GPS-driven and video-driven methods. Our results demonstrate that the derived patterns from the video-driven approach are similar to those derived from groundtruth trajectories, providing evidence of its effectiveness

    Real-time targeted influence maximization for online advertisements

    Get PDF
    Advertising in social network has become a multi-billion-dollar industry. A main challenge is to identify key in-fluencers who can effectively contribute to the dissemina-tion of information. Although the influence maximization problem, which finds a seed set of k most influential users based on certain propagation models, has been well stud-ied, it is not target-aware and cannot be directly applied to online advertising. In this paper, we propose a new problem, named Keyword-Based Targeted Influence Max-imization (KB-TIM), to find a seed set that maximizes the expected influence over users who are relevant to a given advertisement. To solve the problem, we propose a sam-pling technique based on weighted reverse influence set and achieve an approximation ratio of (1−1/e−ε). To meet the instant-speed requirement, we propose two disk-based solu-tions that improve the query processing time by two orders of magnitude over the state-of-the-art solutions, while keep-ing the theoretical bound. Experiments conducted on two real social networks confirm our theoretical findings as well as the efficiency. Given an advertisement with 5 keywords, it takes only 2 seconds to find the most influential users in a social network with billions of edges. 1

    Fixed-time command filtered output feedback control for twin-roll inclined casting system with prescribed performance

    Get PDF
    The article investigates the issue of fixed-time control with adaptive output feedback for a twin-roll inclined casting system (TRICS) with disturbance. First, by using the mean value theorem, the nonaffine functions are decoupled to simplify the system. Second, radial basis function neural networks (RBFNNs) are introduced to approximate an unknown term, and a nonlinear neural state observer is created to handle the effects of unmeasured states. Then, the backstepping design framework is combined with prescribed performance and command filtering techniques to demonstrate that the scheme proposed in this article guarantees system performance within a fixed-time. The control design parameters determine the upper bound of settling time, regardless of the initial state of the system. Meanwhile, it ensures that all signals in the closed-loop system (CLS) remain bounded, and it can also maintain the tracking error within a predefined range within a fixed time. Finally, simulation results assert the effectiveness of the method
    corecore