
Efficient Location-Based Spatial Keyword Query Processing

ZHANG DONGXIANG

Bachelor of Computer Science

Fudan University, China

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

NATIONAL UNIVERSITY OF SINGAPORE

2012

ii

ACKNOWLEDGEMENT

First and foremost, I would like to express my deepest gratitude to my advisor

Professor Anthony K. H. Tung. He welcomed me on board when I was still a fresh

and shy graduate student. During the entire period of my doctoral study, Professor

Tung has provided me with independent research skill, including how to find new

and interesting problems, how to write a good research paper and how to organize

related works in a coherent manner.

Professor Beng Chin Ooi, my project supervisor, also played an essential role in

my research as well as in my life. His strictness has contributed to my growth as a

rigorous research. As a system expert, he has helped improve my ability and skills

in building systems tremendously. I am greatly impressed by his academic vigor as

well as his personalities including diligence, high self motivation and concern with

those around him.

I also would like to thank the members of my thesis committee, Professor Kian-

Lee Tan and Professor Roger Zimmermann for their valuable reviews, comments

and suggestions to improve the quality of the thesis. I appreciate the efforts from

all the professors coauthoring with me, including Masaru Kitsuregawa, Divyakant

iii

Agrawal, Gang Chen, Yeow Meng Chee and Anirban Mondal. In addition, I would

like to thank my English lecturer Professor Xudong Deng for his passion and efforts

in editing my drafts.

Many friends in Singapore have also helped me a lot during my Ph.D pursuit.

First, my best friends Huanhuan Lu, Xiangyu Wang and Zhi Zhong came to Sin-

gapore with me. We lived together, encouraged each other and had great fun in

the past 4 years. I also received useful advice from many senior fellow members

and spent joyful time with them. They are Su Chen, Yueguo Chen, Bingtian Dai,

Difeng Dong, Shuqiao Guo, Dong Guo, Hao Li, Yingyi Qi, Xianju Wang, Nan

Wang, Ji Wu, Sai Wu, Linhao Xu, Ning Ye, Zhenjie Zhang and Shaojie Zhuo. I

also would like to express my appreciation to my lab colleagues and basketball team

members as we shared a wonderful experience together.

Last but not least, I would like to thank all of my big family: my parents Sun-

qing Zhang and Xiujie Zhang, my sisters Lizhi Zhang and Yanqing Zhang and my

younger brother Dongxu Zhang for their unconditional support and encouragement.

I wish my grandmother in heaven would be proud of my achievements.

The most special thanks are reserved for my dearest YuanWang for her company

and love which has sustained me through the otherwise grueling period of my

doctoral study.

iv

ABSTRACT

The emergence of Web 2.0 applications, including social networking sites, wikipedia

and multimedia sharing sites, has changed the way of how information is generated

and shared. Among these applications, map mashup is a popular and convenient

means for data integration and visualization. In recent years, users have contributed

a huge amount of spatial objects in various media formats and displayed them on a

map. They have also annotated these objects with tags to provide semantic mean-

ing. In order to leverage such a large scale spatial-textual database, we propose

efficient location-based spatial keyword query processing strategies in this thesis.

First, we address a novel query, named mCK (m Closest Keywords). The query

accepts a set of query keywords and aims at finding a set of spatial tuples matching

the keywords and closest to each other. A useful application is to find m closest

local service providers using keywords such as “cinema”, “seafood restaurant” and

“shopping mall”, to save the transportation time. To efficiently answer an mCK

query, we introduce a new index named bR∗-tree which is an extension of R∗-tree.

Based on bR∗-tree, we exploit a priori-based top-down search strategy and propose

efficient pruning rules which significantly reduce the search space.

v

Second, we adopt mCK query to detect the geographical context of web re-

sources. More specifically, we build a uniform model to represent online resources

by a set of tags and propose a detection method by tag matching. Since there

could be hundreds of thousands of tags, we improve bR∗-tree and design an ef-

ficient and scalable search algorithm. Furthermore, we propose a new geo-tf-idf

ranking method to improve the matching precision.

Third, we solve the problem of efficient web image locating when tags are not

available. We treat high dimensional image feature as “keyword”. Thus, a geo-

image can be considered as a set of spatial keywords at the same location. Given a

query image, our goal is to find a geo-image in the spatial image database that is

most similar to the query image and use its location as the detecting result. To solve

the nearest neighbor (NN) query, we propose a new index named HashFile. The

index can support approximate NN search in the Euclidean space and exact NN

search in L1 norm. Our experiment results show that it provides better efficiency

in processing both types of NN queries.

Finally, we design and develop a new travel mashup system, named LANGG,

to utilize the above efficient spatial keyword query processing technique and provide

location-based services. The main objective of our system is to recommend users a

travel destination based on their personal interest. Users can submit a set of travel

services they would like to enjoy, an interesting travel blog or even a travel photo

with beautiful scene. User feedback shows that our system provides satisfactory

search results.

CONTENTS

Acknowledgement ii

Abstract iv

1 Introduction 1

1.1 Travel Map Mashup Applications In Web 2.0 2

1.2 Locating m Closest Keywords In a Spatial Database 4

1.3 Locating Web Resources by Spatial Tag Matching 6

1.4 Locating Landmark Photos by Content-Based Matching 11

1.5 LANGG : A Location-Based Travel Mashup System 12

1.6 Contribution of the Thesis . 13

1.7 Thesis Organization . 14

2 Literature Review 16

2.1 Finding m-Closest Keywords in Spatial Databases 16

2.2 Locating Web Documents . 19

2.3 Landmark Recognition . 20

vi

vii

2.3.1 High Dimensional Index for Exact NN Query 21

2.3.2 LSH for Approximate NN Query 22

3 Locating Closest Travel Services 24

3.1 Introduction . 25

3.2 bR∗-tree: R∗-tree With Bitmaps and Keyword MBRs 29

3.3 Search Algorithms . 32

3.3.1 Searching In One Node . 34

3.3.2 Searching In Multiple Nodes 39

3.3.3 Pruning via Distance Mutex 43

3.3.4 Pruning via Keyword Mutex 45

3.4 Empirical Study . 48

3.4.1 Experiments on Synthetic Data Sets 49

3.4.2 Experiments on Real Data Set 55

3.5 Summary . 57

4 Locating Web Resources By Spatial Tag Matching 58

4.1 Introduction . 59

4.2 Spatial Index and Search Algorithm 62

4.2.1 Light-weight Index Structure 62

4.2.2 Bottom-Up Search Algorithm 65

4.3 Ranking . 67

4.3.1 Approximate Ranking Mechanism 70

4.4 Experiment Study . 72

4.4.1 Experiments on Synthetic Data Sets 72

4.4.2 Experiments On Real Data Sets 76

4.5 Summary . 85

viii

5 Landmark Recognition Using HashFile 86

5.1 Introduction . 87

5.2 The Preliminaries . 91

5.2.1 Random Projection . 91

5.2.2 Distance Constraint for Exact NN Query Using L1 93

5.3 HashFile Index Structure . 98

5.3.1 HashFile Overview . 98

5.3.2 Data Insertion . 100

5.3.3 Data Deletion . 102

5.3.4 Data Update . 103

5.4 Exact NN Query Processing . 103

5.5 Approximate NN Query Processing 104

5.6 Complexity and Cost Analysis . 105

5.6.1 Storage Cost . 107

5.6.2 Exact NN Query . 107

5.6.3 Approximate NN Query . 108

5.7 Experiments . 108

5.7.1 Data Set and Query . 108

5.7.2 Performance Measurement 109

5.7.3 Parameter Tuning . 111

5.7.4 Frequent Insertion . 112

5.7.5 Exact NN Query . 113

5.7.6 Approximate NN Query . 116

5.8 Summary . 119

6 LANGG : A Travel Mashup System For Location-Based Services120

6.1 System Framework . 121

ix

6.2 Demonstration . 123

6.2.1 Search Closest Travel Services 123

6.2.2 Search Location Using Tags 124

6.2.3 Search Location by Image 125

7 Conclusion and Future Work 128

7.1 Conclusion . 128

7.2 Future work . 130

LIST OF TABLES

3.1 Possible sets of {A1, A2}, {B1, B2}, and {C1} 40

3.2 Keyword distribution on Texas data set 56

5.1 Notation table . 98

5.2 Parameter Setting . 114

5.3 Index storage cost . 114

5.4 Top-50 NN query selectivity . 115

5.5 Storage cost of HashFile and LSB forest 117

x

LIST OF FIGURES

1.1 Singapore restaurants displayed on Google Maps 3

1.2 Singapore hotels displayed on Bing Maps 4

1.3 Flick photos in Singapore . 6

1.4 Youtube videos in Singapore . 7

1.5 A travel blog example with tags . 8

1.6 A travel image example with tags “bull”, “bronze” and “sculpture” 9

1.7 Distribution of tag “zoo” . 10

1.8 Distribution of tag “USOPEN” . 10

3.1 Distribution of beach, seafood restaurant, shopping mall and cinema

in Singapore . 25

3.2 Node information of bR∗-tree . 31

3.3 An illustration of search in one node 32

3.4 a priori algorithm applied to search in multiple nodes 41

3.5 Extended a priori algorithm . 42

3.6 Example of active MBR . 45

xi

xii

3.7 Performance on increasing TK . 52

3.8 Performance on increasing DS . 53

3.9 Performance on increasing KD . 54

3.10 Performance on increasing DM . 55

3.11 Performance on two real data sets 57

4.1 The index of R∗-tree and inverted index 63

4.2 Bottom-up construction of virtual bR∗-tree 65

4.3 Order of NodeSet candidates checked 67

4.4 Degradation of keyword spatial importance 70

4.5 Approximate model for degradation of keyword spatial importance . 71

4.6 Scalability in terms of m . 74

4.7 Scalability in terms of the number of locations 75

4.8 Scalability in terms of the number of tags 76

4.9 Distribution of tag “zoo” . 77

4.10 Distribution of tag “USOPEN” . 77

4.11 Example tag queries . 78

4.12 Example results returned by mCK and Google Maps 80

4.13 Ranking score for tag query . 81

4.14 Local service queries . 82

4.15 Accuracy result . 83

4.16 Example photo queries . 84

5.1 A random projection example . 94

5.2 Hash value frequency of a color histogram dataset 95

5.3 New frequency distribution of window based hashing 97

5.4 The structure of HashFile and HashNode 99

xiii

5.5 Approximate search in the tree node 106

5.6 Tune parameter W . 111

5.7 The number of pages in the root node 113

5.8 Performance of the exact top-50 NN search 116

5.9 Approximate NN query results of LSB-tree and HashFile 118

5.10 Approximate NN query results of Multi-probe LSH and HashFile . 118

6.1 The framework of location detecting in Web 2.0 applications 121

6.2 System portal of LANGG . 123

6.3 Interface of locating closest travel services 124

6.4 Query by “bird park” . 125

6.5 Query by ”chicken rice” . 126

6.6 Example image query of Merlion . 127

6.7 Example image query of Zoo . 127

CHAPTER 1

INTRODUCTION

The emergence of Web 2.0 applications [5], including social networking sites, wikipedia

and multimedia sharing sites, has changed the way of how information is generated

and shared. In these websites, massive amounts of data have been generated by

users in a collaborative manner. Data from different sources can be further inte-

grated to create new services, leading to an important type of application named

mashup [4]. Mashup applications have attracted great research and commercial

interest. They provide the ability to develop new integrated services quickly and

make them tangible to the business users through friendly map interfaces. In this

thesis, we focus on map mashup application, in which various spatial web resources

are integrated and displayed on map. We tackle the problem of efficient location-

based spatial keyword query processing and build a travel map mashup system,

named LANGG, to provide users with location-based services.

1

2

1.1 Travel Map Mashup Applications In Web 2.0

In Web 2.0, users are allowed not only to retrieve information from websites, but

also to interact and collaborate with each other to contribute new contents. A huge

amount of media resources in various formats have been generated and shared in re-

cent years. In July 2006, YouTube was reported to be serving 100 million views and

65, 000 new video uploads per day [10]. In 2007, millions of photos were uploaded

in Flickr per day [101]. More recently, in January 2011, Facebook announced that a

record-breaking amount of 750 million photos had been uploaded over New Year’s

weekend [7]. Most of these user-generated contents (UGC) are publicly accessi-

ble and constitute a luxuriant database to support many upper layer applications.

Among all these applications, mashup plays an important role in improving data

usability and accessibility. It combines data from different sources and shows great

flexibility in creating new services. A very common mashup application is to com-

bine digital map services like Google Maps, Yahoo Maps or Bing Maps with other

useful information resources. For example, Wikipediavision [8] integrates Google

Maps and a Wikipedia API [9] to display Wikipedia articles with geographical

context on the map. Other common examples include online house rental system,

hotel booking system, trip planning system and so on.

In travel market, there also exist a large number of mashup systems whose main

objective is to provide users with valuable travel guide information. A common

assumption in these systems is that users have already got a clear travel destination

and wish to retrieve useful guide information in that location. For example, a

user who is going to travel in Singapore is interested to know the famous sight

attractions, affordable and well located hotels and food outlets serving local favorite

dishes. To fulfill the requirement, these systems need to collect as many travel

resources as possible, integrate them into a spatial database and provide a user-

3

Figure 1.1: Singapore restaurants displayed on Google Maps

friendly interface for navigation. Figure 1.1 shows an example of restaurant mashup

system based on Google Maps. Each marker on the map represents one restaurant

at a location. When a marker is clicked, an infowindow containing basic information

of that restaurant such as name, address, telephone number, user ranking and

reviews is popped up. From this information, users can get a general idea and

make a decision about whether to go there for dinner. Figure 1.2 shows another

travel mashup system which displays hotels of Singapore on Bing Maps. It adopts a

similar visualization strategy. When a hotel marker is clicked, summary information

of that hotel including price and user ranking score is displayed for a quick decision

making. Such a map visualization tool is common for presenting travel resources

and is convenient for users to browse travel information. Users can easily tell from

the map where the point of interest (POI) is located and get the textual description

4

Figure 1.2: Singapore hotels displayed on Bing Maps

and summary of that POI.

1.2 Locating m Closest Keywords In a Spatial

Database

These map mashup systems generate a huge amount of spatial items in various

formats, including documents, photos and videos. They are often associated with

both textual and spatial attributes. In order to leverage such a large scale spatial-

textual database that is publicly accessible, keyword queries with spatial constraints

have received significant attention from the spatial database research community

and the industry. Typical queries include:

• Nearest Neighbor Query [95]: Find the nearest restaurant which serves

chilly crab from a given hotel.

5

• Range Query [87]: Find a 7-Eleven convenient store within 300 meters

from a given location.

• Closest Pair Query [43]: Find a pair of gas station and shopping mall

closest to each other.

• Spatial Join [34]: Find all pairs of cinema and French restaurant located

in the same shopping mall in Singapore.

In this thesis, we address a novel query named mCK (m Closest Keywords),

which aims at finding a location where m query keywords are closest to each other.

A useful application is to findm closest travel service providers. Here, travel service

could refer to “spa”, “skiing”, “hiking”, “seafood restaurant” or any travel related

service that users could be interested in. Each service is represented by a keyword.

For example, in Figure 1.1, the markers on the map indicate the locations where

keyword “restaurant” appears. It is possible that multiple service providers are

at the same location. To facilitate the statement of our problem, we treat them

as multiple spatial tuples, each with one service, at the same location. Locating

closest services is a very useful function to save the transportation cost between the

service providers and allow users to enjoy all the desired services when they have

limited staying time in a place. For example, when a user is travelling in Singapore,

he can submit a query “beach”, “chilly crab”, “shopping mall” and “cinema”. Our

system will return a beach, a seafood restaurant serving chilly crab, a shopping

mall and a cinema that are closest to each other. The user can take a swim in the

sea, enjoy the chilly crab, go shopping and watch a movie conveniently.

6

Figure 1.3: Flick photos in Singapore

1.3 LocatingWeb Resources by Spatial Tag Match-

ing

Besides textual information, multimedia objects such as photos and videos can also

be displayed on the map. Users can upload their photos to Flickr and share with

their friends. When they upload a photo, they can also add additional spatial

and textual information for the photo. For example, they are allowed to create a

marker on the map to indicate where the photo was taken1. Figure 1.3 illustrates

such a photo mashup example in Flickr. We can see from the figure that there are

283, 694 photos that match the keyword “Singapore” and have geographic location

to display on the map. Each marker represents a photo and users can tell where

a photo was taken from the location of the marker. When a marker is clicked,

other information like author and title are available. Similarly, an example of video

mashup is shown in Figure 1.4 which displays videos from Youtube in Singapore

on Google Maps.

1If the camera is equipped with GPS, this geographic information can be automatically read
from the EXIF [3] data embedded in the photo.

7

Figure 1.4: Youtube videos in Singapore

With these online resources as the underlying database, location detecting ser-

vice has attracted significant interest in recent years due to its commercial potential

to the search engine in providing local or personalized service to customers. Exist-

ing methods take advantage of gazetteer terms in the text body [36, 47, 86, 21, 109,

33, 23] and hyperlink structure [47, 86, 109]. In this thesis, we propose a spatial tag

matching method which utilizes tags as a new information source for location de-

tection if the web resource is associated with tags. In Web 2.0, tagging is a popular

means to annotate various resources, including news, blogs, speeches, photos and

videos. Users are encouraged to add extra textual terms as semantic description or

summarization for the objects. With human intelligence involved, the tags are well

phrased. An example of travel blog about Sentosa Island in Singapore is shown

in the Figure 1.5. The author of the blog contributes four tags. “Palawan” is a

gazetteer term, indicating the name of the beach. “beach”, “island”, and “wooden

bridge” are representative scenes in Sentosa. Another annotation example is shown

in Figure 1.6. The photo is associated with tags “bull”, “bronze” and “sculpture”,

8

which are used as description of the object in the photo. From these two examples,

we observe that although documents are essentially different from other media in

textual context, we can use tags as a uniform semantic wrapper so that different

types of web resources can be treated equally. Tagging provides a means to build

a uniform model for our spatial database :

Definition 1.1 (Uniform Mapped Resource Model). Let S be the d-dimensional

geographical space and T be the tag space. Each object o can be represented as

o = [ref, c1, ..., cd, t1, ..., tn] where [c1, ..., cd] ∈ S, ti ∈ T and ref is the reference to

the object itself.

A travel blog example

We reached the beaches and decided on ’Palawan’ as this is a name of an hammock
Sentosa island in the Philippines that we are planning on visiting, so we will be
able to compare at a later date! The sand was soft and beautiful but you could tell
the beach was man-made as you only had to dig your hands down a little to find
a layer of concrete. The sea was pretty dark and there was a lot of smog in the
atmosphere due to the busy port not far away. Despite this we had a really nice
day on the beach, and for all that the island has to offer this beach is more than
decent enough to spend a few days if you were on a family holiday, which we guess
the resort is aimed towards.
The real beauty of the place is that it is like Disneyworld. Everything is designed
how you would imagine it in a fairytale. The beach was a beautiful shaped bay with
a little island which could be reached by a wooden bridge. We crossed the bridge
and climbed a pagoda style wooden lookout point to get a good view over the beach.
After our day sunning, we took the monorail back to the mainland as if was

Tag : beach, island, Palawan, wooden bridge

Figure 1.5: A travel blog example with tags

9

Figure 1.6: A travel image example with tags “bull”, “bronze” and “sculpture”

Based on the uniform tag model, our spatial database collects user-generated

web resources. Some of them are associated with tags and spatial attributes which

are referred to as geo-tags. Based on our observation, the geo-tag data set is

of acceptable quality. If we consider Flickr for instance, most of the photos are

associated with relevant tags and are correctly marked in the map. For a spatial

subject, its related geo-tags are clustered around the real location. We illustrate

some examples in Figure 4.9 and 4.10. As shown in Figure 4.9, the tag “zoo” is

mainly distributed in three spatial clusters corresponding to Bronx Zoo, Central

Park Zoo and Queens Zoo Wildlife Center respectively. Similarly, in Figure 4.10,

there are a large number of “USOPEN” tags gathering around the Arthur Ashe

Stadium where the tennis match is held. These geo-tag clusters can be utilized

to identify the locations of popular resources and events because related tags will

emerge around that area. It also provides us with new opportunities to locate

resources in a more precise geographical scale.

10

Figure 1.7: Distribution of tag “zoo”

Figure 1.8: Distribution of tag “USOPEN”

If the query is a tagged item, we use a spatial tag matching method to detect

the location. More specifically, we aim at finding a location on the map that

best matches the query tags. We adopt the idea of keyword search in relational

database [18, 59, 78, 82, 74], XML [55, 41, 113, 80, 80] and graph [31, 63, 75] that

returned results by default contain all the query keywords and smaller result size

is preferred as the keywords are considered to be closer to each other. In other

words, we want to find tuples in the space matching the query tags and these

tuples are as close to each other as possible. This problem is similar to locating

closest travel services except that the number of travel services in a city is not

11

large but there could be hundreds of thousands of tags. Therefore, the spatial tag

matching solution must be scalable in terms of the number of tags so as to survive

in the Web 2.0 environment. Moreover, only measuring the relevance between tags

is not enough. The spatial relevance of tags with respect to the detected location

also needs to be taken into account. Thus, we propose a new geo-tf-idf ranking

mechanism to improve the detection precision.

1.4 Locating Landmark Photos by Content-Based

Matching

The problem of locating web resource is more difficult when tags are not available.

To solve it, content based methods have to be used. If the input is a textual docu-

ment, we can simply use existing methods to detect the geographical context of web

documents or first adopt existing key phrase extraction methods to automatically

detect the terms with geographical context [51, 112, 107, 46, 114]. These terms

are considered as tags for the document and the problem becomes locating a web

document using spatial tag matching, which has been discussed above. If the input

is an image, this is essentially a landmark recognition problem, which has attracted

immerse attention in recent years. In the Web 2.0 age, users have created, tagged

and shared large amounts of customized photos. Such large-scale, well-organized

and publicly-accessible web data are retrieved as the underlying image database.

The landmark recognition problem is usually tackled by comparing the input photo

with all the photos in the database. The nearest neighbor is retrieved as the match

result. Thus, efficient access to multimedia objects needs to be supported in order

for the Web users to benefit from such data.

In this thesis, we explicitly address the problem of image similarity search and

12

design an efficient index to process the image data. We treat high dimensional

image feature as “keyword” and represent a geo-image as a set of spatial keywords

at the same location. Nearest neighbor (NN) is used for image match. Processing

strategies for both exact and approximate NN queries of image data are investi-

gated. The former has wide applications in similarity search, pattern recognition,

clustering and classification. The latter is particularly suitable for efficient retrieval

in a large scale database at the risk of certain loss in quality. Since video can be

modelled as a sequence of images via key frame extraction, we will not cover how

to detect the location of a video specifically.

1.5 LANGG : A Location-Based Travel Mashup

System

To utilize the above efficient spatial keyword query processing technique, we design

and develop a new type of travel mashup system, named LANGG to provide

location-based services. The main objective of our system is to recommend users

a travel destination based on their personal interests. Users can submit a set of

travel services they would like to enjoy, an interesting travel blog or even a travel

photo with beautiful scene. Our system is able to detect a location on the map

that best matches the input so that this location can be recommended to users as

the travel destination. The system supports three main applications :

• Application I : locating closest travel services. In this application, the

input consists of a set of travel services and the user’s goal is to return a

location where the submitted services are closest to each other. Such a query

is essentially useful to save the transportation time if the user only has very

limited staying time.

13

• Application II : detecting the geographical context of travel media with

tags. In this application, users are allowed to submit a travel media associated

with a set of annotated tags. The detected location of the media will be

returned. A location that best matches the query tags is returned as the

detection result. Such a query is helpful to assist users in finding a desired

travel destination.

• Application III : detecting the geographical context of travel media without

tags. This application is similar to Application II except that tags are not

available here and content based matching methods have to be used. We focus

on the landmark recognition problem and design an new index to efficiently

answer nearest neighbor query in a large scale image database.

1.6 Contribution of the Thesis

In this thesis, we mainly address efficient location-based spatial keyword query

processing strategies. First, we introduce a novel query, named mCK, to locate m

closest keywords in a spatial database. Such a query is very useful to find closest

local services in a travel destination when users have limited staying time in a place.

To answer an mCK query, we propose efficient index and search algorithm which

significantly reduce the search space. We also adopt mCK query as a spatial tag

matching method to detect the geographical context of web resources. We build a

uniform model to represent various types of web resources and improve the index

and search algorithm to support tag matching in a spatial database with hundreds

of thousands tags. In addition, we tackle the landmark recognition when tags are

not available. Efficient index is proposed and experimental results show that it

provides better efficiency than state-of-the-art works.

14

With the efficient spatial keyword processing technique, we build a travel mashup

system to recommend users a travel destination based on their personal interest.

Users can submit a set of travel services they would like to enjoy, an interesting

travel blog or even a travel photo with beautiful scene to find the related location.

Our system can be considered as a complement to existing travel mashups. Users

can first use our system to find a desired travel destination and then turn to other

systems for more travel guide information.

1.7 Thesis Organization

The rest of the thesis is organized as follows:

In Chapter 2, we review existing works that are related to three locating func-

tions provided by our system. The literature review falls into three categories :

finding m-closest keywords in spatial databases, locating web documents and im-

age recognition.

In Chapter 3, we address how to efficiently find the closest travel services. We

introduce a new spatial index called the bR∗-tree, which is an extension of the

R∗-tree. Based on the index, we propose efficient search algorithm with effective

pruning rules that can significantly reduce the search space.

In Chapter 4, we tackle the problem of locating web resources using spatial tag

matching. We further improve the method in Chapter 3 to be scalable in terms of

total number of tags. Moreover, we propose a new geo-tf-idf ranking mechanism

to measure the geographical relevance of query tags.

In Chapter 5, we focus our discussion on the landmark recognition problem and

propose a novel index structure, named HashFile, for efficient retrieval in a large

image database.

15

In Chapter 6, we present the framework and design issues of our system and

finally, we conclude the whole thesis in Chapter 7.

CHAPTER 2

LITERATURE REVIEW

In this chapter, we conduct a literature review over location-based spatial keyword

query processing technique. First, we review the existing works about how to find

m-closest keywords in a spatial database. Then, we examine how to detect the

geographical context of web document and images.

2.1 Findingm-Closest Keywords in Spatial Databases

The topic of keyword search in spatial databases has been well studied in recent

years [57, 50, 54, 42, 38, 68]. The spatial keyword search is considered as the

combination of spatial query [52, 95, 87] and keyword search. Thus, it contains

both spatial and textual constraints. In order to efficiently process the spatial key-

word search, various hybrid index structures have been proposed by integrating

R-tree [56] or its variants [98, 26] with inverted index or signature file. Hariha-

ran et al. [57] introduced a spatial keyword query with range constraints. Each

16

17

spatial document returned is required to intersect with the query MBR (Minimum

Bounding Rectangle) and matches all the user-specified keywords. They proposed

a hybrid index of R∗-tree and inverted index, called KR∗-tree, to answer the query.

Felipe et al. [50] proposed a similar query type by combining k-Nearest Neighbor

(kNN) query and keyword search, and used IR2, a hybrid index of R-tree and sig-

nature file, for query processing. Göbel proposed a more general hybrid index for

geo-textual searches [54]. Only the most frequent terms are indexed in the extended

R-tree and the filtering strategy relies on the frequency of the query keyword.

Since the ranking methodology of spatial keyword search in the above methods

is based on either the distance to the query point [50] or the relevance with respect

to the query keywords [57], it is necessary to seamlessly combine both the spatial

and textual features in the ranking function. To fill this gap, Khodaei et al. [68]

developed a new distance measure named spatial tf-idf and proposed an index

structure called Spatial-Keyword Inverted File for efficient processing based on the

distance measure. Cao et al. also proposed that both location proximity and text

relevancy should be taken into account during the ranking [42, 38]. They developed

an efficient framework for top-k spatial document retrieval.

The extension to the traditional keyword search is divided into two categories.

The first category relaxes the keyword search constraint to handle approximate

spatial keyword search [115, 20, 19], which is especially useful when users have

no idea of the correct spelling of some keywords. To handle approximate spatial

keyword search, MHR-tree was proposed in [115] to augment R-tree nodes with

min-wise signature [35]. Alternatively, Alsubaiee et al. [20, 19] took advantage

of R-tree and gram-based [108, 73] inverted index and built system prototypes to

demonstrate the practicality of their solution. The other category attempts to

combine keyword search with more complex spatial queries. Besides the popular

18

kNN query and range query, closest-pair queries for spatial data using R-trees have

also been investigated [43, 44, 106]. Users can submit two different keywords in

order to find the closest pair in the spatial database. In this thesis, we extend the

closest pair query to a more general case and propose a novel query, named mCK,

to find m closest keywords in the database. In other words, our mCK query allows

more than two keywords. The tuples matching all the keywords and with minimum

diameter are considered as the best result. Another type of query similar to mCK

query is named optimal sequenced route query [100, 99]. The query aims at finding

a route of minimum length starting from a given source point and covering all the

typed keywords. In comparison, our mCK query does not have such a start point.

and the distance measure used in the ranking is also different.

The mCK query can be answered by adopting the idea of Multi-Way Spatial

Join (MWSJ) [90, 89, 84, 88]. The MWSJ works in the way that given m keywords,

multiple R∗-trees, one for each keyword, will be built. Candidate spatial windows

for mCK query result can be identified among these R∗-trees. The join condition

here becomes “closest in space” instead of “overlapping in space”. Unfortunately, as

m increases, this approach suffers from two serious drawbacks. First, it incurs high

disk I/O cost in identifying the candidate windows (due to synchronous multiway

traversal of R∗-trees) since it does not inherently support effective summarization of

keyword locations. Second, it may not be able to identify a “tight” set of candidate

windows since it determines candidate windows in an approximate manner based

on the leaf-node MBRs of R∗-trees without considering the actual objects. To

process mCK queries in a more scalable manner, we use one R∗-tree to index all

the spatial objects as well as their keywords. Integrating all the information in a

single R∗-tree provides more opportunities for efficient search and pruning.

19

2.2 Locating Web Documents

Location detecting service has attracted significant interest in recent years due to

its commercial potential to the search engine in providing local or personalized ser-

vice to customers. Many existing geographical search engines [116, 85, 91, 2, 1] can

benefit from this process to organize and index the web documents more appropri-

ately. In order to detect geographic locations of web resources, various geographic

information sources are exploited. The most straightforward method is to analyze

the textual contents and extract the geographic entities [36, 47, 86, 21, 109, 33, 23].

First, a gazetteer dictionary is built. The dictionary contains authorized gazetteer

information from various sources such as USGS Geographic Names Information

System [6], World Gazetteer [11], UNSD [12], USPS [13], Yahoo Regional [14].

Recently, geographical entities in Wikipedia have also been considered as a new

source [111]. Given such a dictionary, the next step is to extract the entities with

geographical context in the web document, including postal code, telephone num-

ber, geographical feature names. During this process, it is important to eliminate

the ambiguities. In [21], Amitay et al. tackled the problem of geographic name

disambiguation. They distinguished both geo/non-geo and geo/geo ambiguities.

Besides the web page content, hyperlink structure [47, 86, 109] and server ip ad-

dress [36] are useful information to infer the location of the web page. A page that is

popularly accessed or cited by other local pages or users is considered to be relevant

to a local area. In this thesis, we propose a location detecting method on a new

information source. If the document is associated with user contributed tags, we

use these tags as the query and find a spatial location that best matches these tags.

Otherwise, we can adopt existing methods [49, 51, 112, 107, 46, 114] to extract key

phrases from a web document and treat the key phrases as the tags. Given the

location candidates, we need to measure their relevance with the input keywords,

20

which is a geo-ranking problem. Geo-ranking mechanisms were proposed in [47, 24]

to measure the relevance of tags with respect to a location. In these works, a simi-

lar strategy to PageRank was proposed to measure the local popularity using back

link locations. To further emphasize the local importance, geographic power and

spread measurements are defined in different context. Geographic power refers to

the popularity of a page in a local area and is measured by the normalized number

of desired links to the page. Spread measures how uniform are the distribution of

page’s back links. The back links of the resources are however not available in most

cases. As such, a new geo-ranking mechanism is required to measure the relevance

of geo-tags to the area that they are located in.

2.3 Landmark Recognition

Given a query image without annotations, the problem of location detecting can

be considered as landmark recognition. Suppose we have built a spatial photo

database using photo clustering so that images belonging to the same landmark

are clustered. To achieve this goal, most of the existing works [45, 67, 93, 76, 79]

take advantage of the associated geo-location, descriptive tags as well as their visual

contents to group similar photos together and assign each group a class label. As

a more general approach for the situation when the associated information is not

available, Zheng et al. cluster the landmark photos purely based on the visual

contents. After the raw clustering, the duplicate or near-duplicate photos can be

removed using the methods proposed in [65, 40].

Given the landmark photos taken across the whole planet, building a world-scale

landmark recognition engine becomes an interesting but challenging problem. The

state-of-the-art systems [58, 92, 118] use the same matching mechanism (image-to-

21

image) but based upon different visual features. In [58], a bucket of features such

as color histograms, texton histogram, line features, gist descriptor and geometric

context are taken into consideration. In [92, 118], SIFT feature is the main concern.

However, as has been argued, image-to-image matching is not scalable to a vast

collection of photos. In this thesis, we aim at building an efficient index to process

the nearest neighbor search.

In this following part, we briefly review the index structures that are widely

used to process exact or approximate NN queries in multimedia databases.

2.3.1 High Dimensional Index for Exact NN Query

There exist mainly three types of approaches to answering exact NN query based on

the idea of space partitioning [94, 29, 64, 77], data approximation [110, 96, 70, 27]

or one dimensional transformation [28, 61, 117].

The most common index structures are based on the notion of space partition-

ing, resulting in various types of tree-based index structures such as k-d-b tree [94],

X-tree [29], SR-tree [64] and TV-tree [77]. In these trees, the pruning power of

these methods degrades as the dimensionality of data increases. This can be offset

by maintaining trees with very large height, but in that case since the number of

internal nodes grows exponentially with the tree height, tremendous storage over-

head is incurred. The performance of such trees degrades to be worse than linear

scan.

VA-file and iDistance are the representative indexes for data approximation and

one dimensional transformation respectively. Weber et al. proposed VA-file[110]

which uses bit encoding for pruning and takes advantage of linear scan for query

processing. A look-up on the real data file is triggered when a point cannot be

pruned based on the compressed representation. A proper compression rate must

22

be specified for the best performance. Otherwise, the performance would become

CPU-bound or IO-bound when it is set too large or too small. The major drawback

of VA-file is the lack of flexibility in a dynamic environment as the data in the two

files are sequentially stored. iDistance [61, 117] attempts to solve the problem by

building a light-weight index using B+-tree. A collection of reference points, which

can be dynamically or statically determined, are selected implicitly to partition

the space in Voronoi cells. Instead of splitting the data space, iDistance indexes

the distance to these reference points. The advantage is that the index size is

relatively small and it also demonstrates satisfactory pruning power. However,

its performance is sensitive to the selection of the reference points and too much

random access of the disk pages is required as the selectivity is coarse for NN query

in the high dimensional space.

In contrast, HashFile combines the advantage of random projection and linear

scan. Random projection is useful to filter away the data points that are far

away and the remaining candidates are processed efficiently using a linear scan.

In our experiments, we compare HashFile with VA-file and iDistance to show the

superiority of our index.

2.3.2 LSH for Approximate NN Query

LSH [60, 53] has been widely applied to answer the approximate NN query and

shown to be quite effective for similarity search in multimedia databases including

text data [103], audio data [37], images [66] and videos [48]. The query cost grows

sub-linearly with the data set size in the worst case. However, it is a trivial job

to tune a good tradeoff between the precision and recall. In practice, hundreds of

hash tables have to be built for a high search accuracy [53]. To reduce the number

of hash tables, Lv et al. proposed multi-probe LSH [83], which can obtain the same

23

search quality with much less tables. Since multi-probe LSH is adhoc and without

theoretical guarantee, Tao [105] recently has proposed LSB-tree to address both the

quality and the efficiency of multimedia retrieval. The hash values are represented

as one-dimensional Z-order values and indexed in a B+-tree. Multiple trees can be

built to improve the result quality. Compared to existing LSH methods, HashFile

only recursively partitions dense buckets to achieve more balanced data partitions.

Each bucket hosts similar number of objects. In addition, HashFile takes advantage

of linear scan, which is more efficient than random access used in LSB-tree.

CHAPTER 3

LOCATING CLOSEST TRAVEL

SERVICES

In this chapter, we address a novel spatial keyword query called m-closest keywords

(mCK) query to locate closest travel services. To efficiently answer an mCK query,

we introduce a new index named bR∗-tree, which is an extension of the R∗-tree.

Based on bR∗-tree, we exploit a priori-based search strategy to effectively reduce

the search space. We also propose two monotone constraints, namely the distance

mutex and keyword mutex, as our a priori properties to facilitate effective pruning.

Our performance study demonstrates that our search strategy is indeed efficient in

reducing query response time. Moreover, it demonstrates remarkable scalability in

terms of the number of query keywords.

24

25

Cinema

Chilly Crab

Shopping Mall

Beach

Figure 3.1: Distribution of beach, seafood restaurant, shopping mall and cinema
in Singapore

3.1 Introduction

A user travelling in Singapore may make a schedule like this: First, he wants to

take a swim in the sea. After that, he would like to go shopping and find a seafood

restaurant for the delicious chilly crab. Finally, he would watch movie in a cinema

to end the day trip. The desired recommendation is a place on the map where

a beach, a shopping mall, a seafood restaurant with chilly crab and a cinema are

close to each other. Note that in this application, we represent each type of travel

service as a unique keyword. Thus, “beach”, “shopping mall”, “chilly crab” and

“cinema” are considered as four spatial keywords.

Figure 3.1 shows the spatial distribution of the four travel services in Singapore.

We use different shapes to represent different types of services and each shape in

the map indicates that there is a corresponding service provider in that location.

Our goal is to find a location in the map where there are four points with different

26

shapes closest to each other1. In this example, we can recommend Vivo City as

the result for these four keywords. He can enjoy the sun bath on the Sentosa island

and go shopping, dining and watching movie in Vivo City. We call this problem

mCK Query Problem and formally define it as follows:

Definition 3.1 (mCK Query Problem). Suppose we have a spatial database with

d-dimensional tuples represented in the form (c1, c2, . . . , cd, w), where ci is the coor-

dinate in the i-th dimension and w is the service keyword. Given a set of m query

keywords Q = {wq1, wq2, . . . , wqm}, the mCK Query Problem is to find m tuples T

= {T1, T2, . . . , Tm}, Ti.w ∈ Q and Ti.w 6= Tj.w if i 6= j, and diam(T) is minimum.

The closeness for a set of m tuples can be measured as the maximum distance

between any two of the tuples:

Definition 3.2 (Diameter). Let S be a tuple set endowed with a distance metric

dist(·, ·). The diameter of a subset T ⊆ S is defined by

diam(T) = max
T,T ′∈T

dist(T, T ′).

Different distance metric will give rise to different geometry of the query re-

sponse:

• If dist(·, ·) is the ℓ1-distance metric, then the response containing all the

keywords of the query is a square oriented at a 45◦ angle to the coordinate

axes.

• If dist(·, ·) is the ℓ2-distance (Euclidean distance) metric, then the response

containing all the keywords of the query is a circle of minimum diameter.

1Tuples with multiple service keywords can be treated as multiple tuples, each with a single
keyword and located in the same position.

27

• If dist(·, ·) is the ℓ∞-distance metric, then the response containing all the

keywords of the query is a minimum bounding square.

In this example, the diameter for the four keywords is precisely the diameter

of the circle drawn in Figure 3.1. Users can specify their respective mCK queries

according to their requirements.

A naive mCK query processing approach is to exhaustively examine all possible

sets of m tuples of objects matching the query keywords. We can build m inverted

lists for each of m keywords with each list having only spatial objects that contain

the corresponding keyword. The exhaustive algorithm can be implemented in a

multiple nested loop fashion. If the number of objects matching keyword i is D(i),

then the number of tuples to be examined is
∏m

i=1D(i). This is prohibitively

expensive when the number of objects and/or m is large.

Spatial data is almost always indexed to facilitate fast retrieval. We can adopt

the idea of Papadias et al. [89] to answer mCK query. Given N R∗-trees, one for

each keyword, candidate spatial windows for mCK query result can be identified by

executing multiway spatial joins (MWSJ) among the R∗-trees. The join condition

here becomes “closest in space” instead of “overlapping in space” [89]. When m is

very small, this approach accesses only a small portion of the data and returns the

result relatively quickly. However, as m increases, this approach suffers from two

serious drawbacks. First, it incurs high disk I/O cost for identifying the candidate

windows (due to synchronous multiway traversal of R∗-trees) since it does not

inherently support effective summarization of keyword locations. Second, it may

not be able to identify a “tight” set of candidate windows since it determines

candidate windows in an approximate manner based on the leaf-node MBRs of

R∗-trees without considering the actual objects. To process mCK query in a more

scalable manner, we propose to use one R∗-tree to index all the spatial objects as

28

well as their keywords. Integrating all the information in a single R∗-tree provides

more opportunities for efficient search and pruning. The other non-overlapping

space partitioning method like PR-tree [22] or quadtree [97] could be used but

may not perform better than R∗-tree. The reason is that we need to check all

the possible combinations of tree nodes and the design principle of R∗-tree is to

guarantee that objects closer to each other are more likely to be stored in the same

node. On the other hand, R∗-tree is a balanced tree. Compared to quadtree, it has

worst case performance bound.

The main contributions of this work are as follows.

• We propose a novel spatio-keyword query, called the mCK query, which is

useful to locate a group of travel services close to each other on the map.

• We propose a new index, called bR∗-tree, for query processing. bR∗-tree

extends the R∗-tree to effectively summarize keywords and their spatial in-

formation.

• We incorporate efficient a priori-based search strategy, which significantly

reduces the combinatorial search space.

• We define two monotone constraints, namely the distance mutex and key-

word mutex, as a priori properties for pruning. We also provide low-cost

implementations for the examination of these constraints.

• We conduct extensive experiments to demonstrate that our algorithm not

only is effective in reducing mCK query response time, but also exhibits

good scalability in terms of the number of query keywords.

The remainder of this chapter is organized as follows. Section 3.2 introduces

bR∗-tree. Section 3.3 proposes a priori-based mCK query processing strategies and

29

two monotone constraints used as a priori properties to facilitate pruning. Efficient

implementations for the examination of these two constraints are also provided.

Section 3.4 reports our performance study. Finally, we conclude our chapter in

Section 3.5.

3.2 bR∗-tree: R∗-tree With Bitmaps and Key-

word MBRs

To process mCK queries in a more scalable manner, we propose to use one R∗-tree

to index all the spatial objects and their keywords. In this section, we discuss the

proposed index structure called the bR∗-tree.

bR∗-tree is an extension of the R∗-tree. Besides the node MBR, each node is

augmented with additional information. A straightforward extension is to summa-

rize the keywords in the node. With this information, it becomes easy to decide

whether m query keywords can be found in this node. If there are N keywords

in the database, the keywords for each node can be represented using a bitmap of

size N , with a “1” indicating its existence in the node and a “0” otherwise. For

example, a bitmap B = 01001 reveals that there are five keywords in the database

and the current node can only be associated with the keywords in the second and

fifth positions of the bitmap. This representation incurs little storage overhead.

Moreover, it can accelerate the checking process of keyword constraints due to the

relatively high speed of binary operations. Given a query Q = 00110, if we have

B AND Q = 0, it implies that the given node does not have any query keywords

and thus, this node can be eliminated from the search space.

Besides the keyword bitmap, we also store the keyword MBR in the node to set

up more powerful pruning rules. The keyword MBR of keyword wi is the MBR for

30

all the objects in the nodes that are associated with wi. It summarizes the spatial

locations of wi in the node. Using this information, we know the approximate area

in the node which each keyword is distributed. If M is the node MBR and Mi is

the keyword MBR for wi, we have Mi ⊆ M .

When N is a large number, the cost for storing the keyword MBR is very

high. For example, suppose there are a total of 100 keywords in the database and

the objects are three-dimensional data. Spatial coordinates are usually stored in

double precision, which occupies eight bytes per coordinate. It would therefore

take 100 × 3 × 8 × 2 = 4800 bytes to store the keyword MBRs in one node. To

reduce the storage cost, we split the node MBR into segments along each dimension.

Each keyword MBR is represented approximately by the start and end offsets of

the segments along each dimension. The range of an offset that occupies n bits is

[0, 2n − 1]. In our implementation, we set n = 8 (resulting in 256 segments) and

found that it provided satisfactory approximation.

After being augmented with bitmap and keyword MBR, non-leaf nodes of bR∗-

tree contain entries in the form of (ptrs, mbr, bmp, kwd mbr), where

• ptrs represents pointers to child nodes;

• mbr is the node MBR that covers all the MBRs in the child nodes;

• bmp is a keyword bitmap, each bit of which corresponding to a specific key-

word, and marked “1” if the node contains that keyword and “0” otherwise;

• kwd mbr is the vector of keyword MBR for all the keywords contained in the

node.

Fig. 3.2 depicts an example of an internal node containing three keywords

w1, w2, w3 represented as 111. The node also maintains three keyword MBRs for

w1, w2 and w3. The keyword MBR of wi is actually the spatial bound of all the

31

objects with associated keyword wi. Leaf nodes contain entries of the form (oid,

loc, bmp), where

• oid is a pointer to an object in the database;

• loc represents the coordinates of the object;

• bmp is the keyword bitmap.

w1

w1

w2

w2

w3

w3

w2

w3

w3

w3w2
w1

w1C3

w1
w2

2C

w1

W2

w3

w2

C1

3

W1

W

11 Node Bitmap

Keyword MBR

1

Figure 3.2: Node information of bR∗-tree

A bR∗-tree can be maintained similar to R∗-tree. In R∗-tree, insertion works as

follows: new tuples are added to leaves, overflowing nodes are split and the changes

are propagated upward in the tree. The propagation process is called AdjustTree

and the parent node is updated based on the property that its MBR is tightly

bound to the MBRs of its child nodes. The bitmap and keyword MBR also have

similar properties for convenient information update in the parent node. The set of

keywords of the parent node is the union of the sets of keywords in the child nodes.

If wi appears in a child node, it must also appear in the parent node. On the other

hand, the keyword MBR of wi in the parent node is actually the minimum bound

of the corresponding keyword MBRs in the child nodes. If the parent node’s MBR

does not tightly enclose all its child MBRs, or its keywords or keyword MBRs

are not consistent with those in the child nodes, AdjustTree is invoked. Hence,

we can construct our bR∗-tree by means of the original R∗-tree algorithm [26] by

32

adding the operations of updating keywords and keyword MBR when AdjustTree

is invoked. In a similar vein, the operations of update and delete in bR∗-tree can

also be naturally extended from the original implementations.

3.3 Search Algorithms

Suppose a hierarchical bR∗-tree has been built on all the data objects. mCK

query aims at finding m closest keywords in the leaf entries matching the query

keywords. Our search algorithm starts from the root node. The target keywords

may be located within one child node or across multiple child nodes of the root.

Hence, we need to check all possible subsets of the child nodes. The candidate

search space consists of two parts:

• the space within one child node;

• the space across multiple (> 1) child nodes.

If a child node contains all m query keywords, we treat it as a candidate search

space. Similarly, if multiple child nodes together can contribute all the query

keywords and they are close to each other, then they are also included in the

search space.

1c

C : 1010

C : 1111

C : 0011

2c
3c

1

2

3

Figure 3.3: An illustration of search in one node

To give an intuition of how the search space looks like, let us look at Fig. 3.3.

The node has three child nodes C1, C2, and C3, and they are close to each other.

33

C1 is associated with w2 and w4, C2 with all the keywords, and C3 with w1 and

w2. Their bitmap representations are also shown in the figure. If the query is

1111, our candidate search space includes the subsets {C2}, {C1, C2}, {C2, C3} and

{C1, C2, C3}. The target keywords may be located in these nodes. {C1}, {C3} and

{C1, C3} are pruned because they lack certain query keywords.

After exploring the root node, we obtain a list of candidate subsets of its child

nodes. In order to find m closest keywords located at the leaf entries, we need

to further explore these candidates and traverse down the bR∗-tree. For example,

C2 will be processed in a similar manner to the root node. Subsets of child nodes

of C2 are checked and all those that may possibly contribute a closer result are

preserved. The search space for multiple nodes, such as {C1, C2}, is also turned

into combinations of subsets of their child nodes. Each combination consists of child

nodes from both C1 and C2. We can consider this process as node set {C1, C2}

being replaced by subsets of their child nodes and spawning a larger number of new

node sets. The number of nodes in the new node set is nondecreasing and their

nodes are one level lower in the bR∗-tree. If we meet a set of leaf nodes, we retrieve

all the combinations of m tuples from the leaf entries and calculate the distance of

each tuple set to see if a closer result can be found. Note that during the whole

search process, the number of nodes in a node set will never exceed m because

our target m tuples can only reside in at most m child nodes. This provides an

additional constraint to reduce the search space.

Algorithms 1 and 2 summarize our approach for finding m closest keywords.

The first step is to find a relatively small diameter for branch-and-bound pruning

before we start the search. We start from the root node and choose a child node

with the smallest MBR that contains all the query keywords and traverse down that

node. The process is repeated until we reach the leaf level or until we are unable

34

to find any child node with all the query keywords. Then we perform exhaustive

search within the node we found and use the diameter of the result as our initial

diameter for searching. Our experiments show that we can find a result of relatively

small diameter in a very short time in this manner. We shall henceforth use δ∗ to

denote the smallest diameter of a result that has been found so far.

With this initial δ∗, we start our search from the root node. Since we are deal-

ing with search in one node or multiple nodes, for the sake of uniformity, we use

NodeSet to denote a set of nodes as candidate search space, regardless of the num-

ber of nodes in it. The function SubsetSearch traverses the tree in a depth-first

manner so as to visit the data objects in leaf entries as soon as possible. This

increases the chance of finding a small δ∗ at an early stage for better pruning. If

NodeSet contains leaf nodes, we retrieve all the objects in the leaf entries and

exhaustively search for the closest keywords. Otherwise, we apply search strate-

gies according to the number of nodes contained in NodeSet. In the following

subsection, we discuss these strategies.

Algorithm 1 — Finding m Closest Keywords

Input: m query keywords, bR∗-tree
Output: Distance of m closest keywords
1. Find an initial δ∗

2. return SubsetSearch(root)

3.3.1 Searching In One Node

When searching in one node, our task is to enumerate all the subsets of its child

nodes in which it is possible to find m closer tuples matching the query keywords.

The subsets which contain all m keywords and whose child nodes are close to each

other are considered as candidates. There is also a constraint that the number of

nodes in a subset should not exceed m. Therefore, the number of candidate subsets

35

Algorithm 2 — SubsetSearch: Searching in a Subset of Nodes

Input: current subset curSet
Output: Distance of m closest keywords
1. if curSet contains leaf nodes then
2. δ = ExhaustiveSearch(curSet)
3. if δ < δ∗ then
4. return δ
5. else
6. if curSet has only one node then
7. setList = SearchInOneNode(curSet)
8. for each S ∈ setList do
9. δ∗ = SubsetSearch(S)
10. if curSet has multiple nodes then
11. setList = SearchInMultiNodes(curSet)
12. for each S ∈ setList do
13. δ∗ = SubsetSearch(S)

that may get further explored could reach
∑m

i=1

(

n
i

)

for a node with n child nodes.

An effective strategy for reducing the number of candidate subsets is of paramount

importance as each subset will later spawn an exponential number of new subsets.

Incidentally, a priori algorithm of Agrawal and Srikant [17] has been an influential

algorithm for reducing search space for combinatorial problems. It was designed

for finding frequent itemsets using candidate generation via a lattice structure and

has the following advantages:

1. Each candidate itemset is generated once because the way of generating new

candidates is fixed and ordered. The k-itemset is joined by two (k − 1)-

itemsets with the same (k − 2)-length prefix. Therefore, given a candidate

itemset, such as {a, b, c, d}, we can infer that it is joined by {a, b, c} and

{a, b, d}.

2. For a k-itemset, we only need to check whether all its (k− 1)-itemset subsets

are frequent in level k−1. The cost is O(n). This is due to the a priori prop-

erty that all nonempty subsets of a frequent itemset must also be frequent.

36

It is not necessary to check all its subsets at lower levels, the cost of which

would be exponential.

In order to take advantage of a priori algorithm, we define two monotonic

constraints called distance mutex and keyword mutex. If a node set N =

{N1, N2, . . . , Nn} is distance mutex or keyword mutex, then any superset of N is

also distance mutex or keyword mutex and can be pruned.

Definition 3.3 (Distance Mutex). A node set N is distance mutex if there exist

two nodes N,N ′ ∈ N such that dist(N,N ′) > δ∗.

The definition of distance mutex is based on the observation that if the minimum

distance between two node MBRs of N and N ′ is larger than δ∗, then the node

set {N,N ′} does not give a result with diameter better than δ∗. This is obvious

because the distance between any two tuples from N and N ′ must be larger than

δ∗. Hence, we have the following lemma.

Lemma 3.1. If a node set N is distance mutex, then it can be pruned.

Proof. IfN is distance mutex, then there exist two nodesN,N ′ ∈ N with dist(N,N ′) >

δ∗. For any m tuples T1, T2, . . . , Tm found in this node set that match m query key-

words , we can find at least one Tu from N and Tv from N ′ because each node has

to contribute at least one tuple for the result. Since the distance between Tu and

Tv must be larger than δ∗, any candidate set of m tuples has diameter larger than

δ∗.

Lemma 3.2. Distance mutex is a monotone property.

Proof. Suppose N is distance mutex. Then there exist two nodes N,N ′ ∈ N with

dist(N,N ′) > δ∗. Any superset of N must also contain N and N ′ and hence must

have diameter exceeding δ∗.

37

If all the nodes in node set N are close to each other, we can still take advantage

of the stored keyword MBR for pruning. Here, we consider the problem from the

perspective of contribution of keywords. Each node in the set must contribute

a distinct subset of query keywords and all the contributed keywords constitute a

complete set of query keywords. For example, given a set of two nodesN andN ′ and

a query of three keywords 0111, if the closest keywords exist in this set, there are six

cases of different contributions of query keywords by N and N ′. N contributes one

of the query keywords and N ′ contributes the other two. This generates three cases:

(w1, w2w3), (w2, w1w3), (w3, w1w2). If N contributes two and N ′ contributes one,

there are another three cases: (w1w2, w3), (w1w3, w2), (w2w3, w1). If the distance of

any two different keywords (wi, wj) is larger than δ∗, where wi is from N and wj is

from N ′, then the diameters of the six cases above are all larger than δ∗. We say

that the node set is keyword mutex. The distance of (wi, wj) can be measured by

the minimum distance of the two corresponding keyword MBRs. More generally,

the concept of keyword mutex is defined as follows:

Definition 3.4 (Keyword Mutex). Given a node set N = {N1, N2, . . . , Nn}, for

any n different query keywords (wq1, wq2, . . . , wqn) in which wqi is uniquely con-

tributed by node Ni, there always exist two different keywords wqi and wqj such that

dist(wqi, wqj) > δ∗, then N is called keyword mutex.

Keyword mutex has properties similar to distance mutex.

Lemma 3.3. If a node set {N1, N2, . . . , Nn} is keyword mutex, then it can be

pruned.

Proof. For any candidate ofm tuples T = {T1, T2, . . . , Tm}matching the query key-

words, we want to prove diam(T) > δ∗. Since each node is required to contribute at

least one tuple and m ≥ n, we can extract n different keywords {ws1, ws2, . . . , wsn},

38

each wsj coming from node Nj . According to our definition of keyword mutex,

there exist two keywords wsi and wsj whose distance is larger than δ∗. Two tuples

Tu and Tv in candidate T , associated with wsi and wsj respectively, can be found

to be located within the two corresponding keyword MBRs with distance larger

than δ∗. Therefore, diam(T) > δ∗ and the node set can be pruned.

Lemma 3.4. Keyword mutex is a monotone property.

Proof. Suppose N is keyword mutex and N ′ is its superset with t nodes. For any

t different keywords {ws1, ws2, . . . , wst} where wsi is contributed by node Ni, we

can find two keywords wsj and wsk from nodes Nj and Nk(Nj , Nk ∈ N), such that

dist(wsj , wsk) > δ∗. Hence N ′ is also keyword mutex.

Algorithm 3 — SearchInOneNode: Searching in One Node

Input: A node N in bR∗-tree
Output: A list of new NodeSets
1. L1 = all the child nodes in N
2. for i from 2 to m do
3. for each NodeSet C1 ∈ Li−1 do
4. for each NodeSet C2 ∈ Li−1 do
5. if C1 and C2 share the first i− 1 nodes then
6. C = NodeSet(C1, C2)
7. if C has subset not appear in Li−1 then
8. continue
9. if C is not distance mutex then
10. if C is not keyword mutex then
11. Li = Li ∪ C
12. for each NodeSet S ∈ ∪m

i=1Li do
13. if S contains all the query keywords then
14. add S to cList
15. return cList

The method for searching in one node is shown in Algorithm 3. First (in line

1), we put all the child nodes in the bottom level of the lattice. The lattice is built

39

level by level with increasing number of child nodes in the NodeSet. In level i,

each NodeSet contains exactly i child nodes. For a query with m keywords, we

only need to check NodeSet with at most m nodes, leading to a lattice with at

most m levels. Lines 5–6 show two sets C1 and C2 in level i − 1 being joined.

They must have i − 2 nodes in common. Lines 7–14 check if any of its subsets in

level i − 1 is pruned due to distance mutex or keyword mutex. If all the subsets

are legal, we check whether this new candidate itself is distance mutex or keyword

mutex for pruning. If it is not pruned, we add it to level i. In lines 19–22, after all

the candidates have been generated, we check each one to see if it contains all the

query keywords. Those missing any keywords are eliminated. We do not check this

constraint while building the lattice because if a node does not contain all the query

keywords, it can still combine with other nodes to cover the missing keywords. As

long as it is neither distance mutex nor keyword mutex, we keep it in the lattice.

3.3.2 Searching In Multiple Nodes

Given a node set N = {N1, N2, . . . , Nn}, the search in N needs to check all the

possible combinations of child nodes from each Ni to explore the search space in the

lower level. The number of child nodes in the newly derived sets should not exceed

m. For example, given a node set {A,B,C} where A = {A1, A2}, B = {B1, B2}

and C = {C1}. Ai, Bi and Ci are child nodes in A,B, and C, respectively. Assume

all the pair distances of child nodes are less than δ∗. All the candidate combinations

of child nodes are shown in Fig. 3.1. Every new node set contains child nodes from

all the three nodes. If m = 3, the candidates are those in the first column. Each

query keyword is contributed by exactly one of the child nodes. If m = 5, the

search space includes all the node sets listed in the figure.

The a priori algorithm can still be applied to this situation. Fig. 3.4 shows the

40

Table 3.1: Possible sets of {A1, A2}, {B1, B2}, and {C1}

3 nodes 4 nodes 5 nodes
A1B1C1 A1A2B1C1 A1A2B1B2C1

A1B2C1 A1A2B2C1

A2B1C1 A1B1B2C1

A2B2C1 A2B1B2C1

lattice to generate candidates for the above node set {A,B,C}. The sets with child

nodes from all three nodes are marked with bold lines. The nonbold nodes cannot

be candidates. Given m query keywords, only the bottom m levels of the lattice

is built. The properties of distance mutex and keyword mutex are also applicable

during generation of the new candidates. The algorithm returns those candidates

in the bold nodes, which are neither distance mutex nor keyword mutex. However,

this approach creates many unnecessary candidates and incurs additional cost in

checking these candidates. For example, ifm = 3, we know from Fig. 3.1 that there

are only four candidate sets that need to be generated. But the a priori algorithm

will create a whole level for candidates with three nodes, thereby resulting in ten

candidates.

Alternatively, we propose a new algorithm which does not generate any un-

necessary candidates, but still keeps the advantages of a priori algorithm. For a

node set N = {N1, N2, . . . , Nn}, we reuse the n lists of candidate node sets gener-

ated by applying a priori algorithm to search in each node. The ith list contains

the sets of child nodes in Ni. The sets are ordered from lower levels in the lat-

tice to higher levels. For example, if Ni has three child nodes {C1, C2, C3}, the

sets of child nodes in the corresponding list may be ordered in the following way:

{C1}, {C2}, . . . , {C1, C2, C3}. An initial filtering is done on Ni’s list by only con-

sidering the child nodes that are close to all the other Nj . If Ck in Ni is far away

41

A A C1 2 1A A B 1 2 1 B B C1 122 2 1A B C A B C2 111 2A A B 2

......

1 2 1 2 1

A A A B B B B C

A A B B C

1 2 1 1 2 2 1B C1 1A B1 1 2

A A B B C1 2 1 12

1A A B C2 11 1 2 A B B C1 1 12 2 1 11 2 2A A B B1
A A B C2 1 A B B C2

Figure 3.4: a priori algorithm applied to search in multiple nodes

from any other node Nj , all the sets in the ith list containing Ck are pruned.

To generate new candidates, we enumerate all the possible combinations of

child node subsets from these n lists. Fig. 3.5 illustrates our approach. At the

bottom level, we have three lists of child node subsets from nodes A, B, and C.

Combinations of the subsets from these three lists are enumerated to retrieve new

candidate sets. As shown in Fig. 3.5, all the nine candidate sets are directly

retrieved from the subsets in the bottom level. In this manner, our algorithm

does not generate unnecessary candidates. Moreover, the enumeration process is

ordered, as shown by the dashed arrows. A new candidate is enumerated only after

all of its subsets have been generated. For example, A1A2B1C1 must be generated

after A1B1C1 and A2B1C1 because the subsets of child nodes in each list are ordered

by the node number. As a consequence, we can efficiently generate the candidates

and still preserve the advantages of a priori algorithm:

1. Each candidate item is generated once. For example, given a candidate item

42

{A1A2B1C1}, we know that it is combined by {A1, A2}, {B1} and {C1}. No

duplicate candidates will appear in the results.

2. For a k-item, we only need to check its (k − 1)-item subsets. Since the

candidates in each Ni generated by a priori algorithm are ordered, all its

subsets must have been examined when we are processing current k-item.

A 1 A 2 A A 1 2 B1 B B 1 2 C1B2

1 1 1 1 2 1A B B C A B B C

1 1

1 1

A A B B C1 2 2 1

2A B C12 11 1A B C1 A B C2 A B C1 2

2 A A B C2 1 1

1

A A B C1 2 2 2

Figure 3.5: Extended a priori algorithm

Algorithm 4 shows how a set of n nodes {N1, . . . , Nn} is explored. First, n lists

of ordered subsets of child nodes are obtained. Then Algorithm 5 is invoked to

enumerate all the candidate sets. It is implemented in a recursive manner. Each

time an enumerated candidate is generated, we check if it contains all the query

keywords to decide whether to prune it or to put it in the candidate list(see Lines

1–4). Lines 5–8 indicate the beginning of the recursion process. It starts from each

child node subset in list Ln and makes it as our current partial node set curSet.

curSet recursively combines with other child node subsets until it finally contains

child nodes from {N1, . . . , Nn}. In each recursion, we iterate the child node sets in

43

list Li to combine with curSet and generate a new set denoted as newSet. Lines

12–13 show that if newSet already has more than m child nodes, we stop the

iteration. The child node subsets which are not checked could only have more child

nodes and will result in even more nodes in newSet. Otherwise, we check if any

subsets of newSet have been pruned due to distance mutex or keyword mutex. If

not, we continue checking whether this new NodeSet itself is distance mutex or

keyword mutex. All these checking functions are shown in Lines 14–17. If newSet

is not pruned, we set it as curSet and continue the recursion. Finally, the algorithm

returns all the candidates that were not pruned. In the following subsections, we

propose two novel methods to efficiently check whether a set is distance mutex or

keyword mutex.

Algorithm 4 — SearchInMultiNodes: Search In Multiple Nodes

Input: A set of {N1, . . . , Nn} in bR∗-tree
Output: A list of new NodeSets
1. for each node Ni do
2. Li = SearchInOneNode(Ni)
3. perform an initial filtering on Li

4. return Enumerate(L1, . . . , Ln, n, NULL)

3.3.3 Pruning via Distance Mutex

The diameter of a candidate ofm tuples matching the query keywords is determined

by the maximum distance between any two tuples. The candidate can be discarded

if we found two tuples in it with distance larger than δ∗. Similarly, as we are

traversing down the tree, we can eliminate the node sets in which the minimum

distance between two nodes is larger than δ∗. A candidate which is not distance

mutex requires each pair of nodes to be close. It takes O(n2) time to check the

distance between all pairs of a set of n nodes.

To facilitate more efficient checking, we introduce a concept called active

44

Algorithm 5 — Enumerate: Enumerate All Possible Candidates

Input: n lists of sets of child nodes L1, . . . , Ln, count and curSet
Output: A list of new NodeSets
1. if count = 0 then
2. if curSet contains all the query keywords then
3. push curSet into the candidate list cList
4. return
5. if count = n then
6. for each NodeSet S ∈ Ln do
7. curSet = S
8. Enumerate(L1, . . . , Ln, count−1, curSet)
9. else
10. for each NodeSet S ∈ Ln do
11. newSet = NodeSet(curSet, S)
12. if newSet contains more than m nodes then
13. break
14. if newSet has any illegal subset candidate then
15. continue
16. if newSet is not distance mutex then
17. if newSet is not keyword mutex then
18. Enumerate(L1, . . . , Ln, count−1, newSet)
19. return cList

MBR. Fig. 3.6(a) illustrates this concept with a set of two nodes {N1, N2}. First,

we enlarge these two MBRs by a distance of δ∗, and their intersection is marked

by the shaded area M in the figure. We can restrict our search area within area

M because any tuple outside M cannot possibly combine with tuples of the other

node to achieve a smaller diameter than δ∗. In this example, the child node C1

does not participate because it does not intersect with M . The objects in C2 but

outside M need not be taken into account as well. We call M the active MBR of

N1 and N2 because a candidate of m tuples can only reside within the area covered

by M . However, we should also check for false intersections, which is shown in Fig.

3.6(b). The intersection actually lies outside both N1 and N2. If this happens,

the set does not have an active MBR and becomes distance mutex. Hence, we can

prune it away.

45

N1

N2

C1

C2
δ∗

M

(a) True intersection

N1

N2

δ∗M

(b) False intersection

Figure 3.6: Example of active MBR

When a third node N3 combines with N1 and N2, we only need to check whether

N3 intersects with M , without having to calculate the distance from N3 to N2 and

N1. Any tuple outsideM is either far away fromN1 or far away fromN2. Therefore,

if N3 does not intersect with M , we can conclude that the set {N1, N2, N3} is

distance mutex. Otherwise, we update the active MBR for this new set to be its

intersection with the enlarged N3. This property greatly facilitates the checking of

distance mutex. When we are checking a new candidate “joined” by two sets C1

and C2 in a priori algorithm, we only need to check whether the active MBR of

C1 intersects with that of C2. Moreover, as more nodes participate in the set, the

active MBR becomes smaller and smaller, and is likely to be pruned. This helps to

reduce the cost of search by avoiding the enumeration of large number of nodes.

3.3.4 Pruning via Keyword Mutex

A set of n nodes is said to be keyword mutex if for any n different keywords, each

from one node, we can always find two keywords whose distance is larger than δ∗.

We use the keyword MBR stored in each node to check for keyword mutex. We

present a simple example by considering a set of two nodes {A,B}. Given four query

keywords, we construct a 4 × 4 matrix M(A,B) = (m)ij to describe the keyword

46

relationship between A and B: mij indicates whether tuples with keyword wi in

A can be combined with tuples with keyword wj in B. If the minimum distance

between these two keyword MBRs is smaller than δ∗, then mij = 1; otherwise,

mij = 0. If wi does not appear in A, or wj does not appear in B, then also mij = 0.

Moreover, mii = 0 since each keyword in the mCK result can only be contributed

by one node. If M(A,B) is the zero matrix, we can conclude that the set is keyword

mutex. For any two different keywords wi and wj from A and B, its distance must

be larger than δ∗.

Generally, for a set of n ≥ 3 nodes {N1, N2, . . . , Nn}, we define M(N1, . . . , Nn)

recursively as follows: for n ≥ 3,

M(N1, . . . , Nn) =(M(N1, N2)×M(N2, . . . , Nn))⊗

(M(N1, . . . , Nn−1)×M(Nn−1, Nn))⊗

M(N1, Nn),

where × is the ordinary matrix multiplication, and ⊗ is elementwise multiplication.

The base case when n = 2 has already been defined in the paragraph above.

As the lemma below shows, we need only check whether M(N1, . . . , Nn) = 0 to

determine if {N1, . . . , Nn} is keyword mutex.

Lemma 3.5. If M(N1, . . . , Nn) = 0, then the set of nodes {N1, N2, . . . , Nn} is

keyword mutex.

Proof. Suppose M(N1, . . . , Nn) = 0 but {N1, . . . , Nn} is not keyword mutex. Then

there must exist n different keywords k1, . . . , kn from nodesN1, . . . , Nn, respectively,

such that all pairs of keywords are at distance less than δ∗. We haveM(Ni, Nj)kikj =

47

1 for 1 ≤ i < j ≤ n. First, we prove

M(Nu, . . . , Nv)kukv ≥
∏

u≤i<j≤v

M(Ni, Nj)kikj (3.1)

by induction on v − u

When v − u = 1, (3.1) clearly holds. For v − u > 1, consider the inequalities:

M(Nu, . . . , Nv−1)kukv−1
≥

∏

u≤i<j≤v−1

M(Ni, Nj)kikj

and

M(Nu+1, . . . , Nv)ku+1kv
≥

∏

u+1≤i<j≤v

M(Ni, Nj)kikj ,

which hold by the induction hypothesis. Since the matrix entries are all nonnega-

tive, we have

M(Nu, . . . , Nv)kukv

≥
(

M(Nu, Nu+1)kuku+1
·
(

∏

u+1≤i<j≤v

M(Ni, Nj)kikj

))

·
((

∏

u≤i<j≤v−1

M(Ni, Nj)kikj

)

·M(Nv−1Nv)kv−1kv

)

·M(Nu, Nv)kukv

≥
∏

u≤i<j≤v−1

M(Ni, Nj)kikj .

Therefore,

M(N1, . . . , Nn)k1kn ≥
∏

1≤i<j≤n

M(Ni, Nj)kikj = 1,

which is nonzero. This is a contradiction.

48

The advantage of the matrix implementation is that it can be naturally inte-

grated into our a priori-based search strategy. When dealing with set {N1, . . . , Nn},

the matrices involved in the above formula will already have materialized in most

cases. Therefore, checking for keyword mutex requires only two matrix multipli-

cations and two matrix elementwise products, which can be achieved at a low

computation cost.

3.4 Empirical Study

This section provides an extensive performance study of our query strategy using

one bR∗-tree to integrate all the spatial and keyword information. We use MWSJ

approach [89] as reference which works in this way: If there areN keywords existing

in the spatial database, N separate R∗-trees are built. Given m query keywords, we

pick m corresponding R∗-trees T1, T2, . . . , Tm. The trees are ordered by the number

of objects in the tree. The search process starts from the smallest R∗-tree T1 with

fewest objects. For any leaf MBR M1 in T1, we search the leaf MBRs in T2 that are

close enough to M1. The idea of active MBR can be applied to speed up the search.

In T3, the search space has been shrunk to the active MBR of M1 and M2. Only

MBRs intersecting with this active MBR will be taken into account. This process

lasts until all the leaf MBRs near M1 in all other R∗-trees have been explored.

Then, we move to other leaf MBRs in T1 until all the combinations of objects in

each R∗-tree have been explored completely. Such an implementation outperforms

the traditional top-down strategy used in answering closest-pair queries [43].

We implement both algorithms in C++ using its standard template library.

Our bR∗-tree is implemented by extending the R∗-tree code 2. All the experiments

are conducted on a server with Intel Xeon 2.6GHz CPU, 8GB memory, running

2http://research.att.com/∼marioh/spatialindex/

49

Ubuntu 7.10. Both synthetic and real life data sets are used for performance

testing. We use average response time (ART) as our performance metric: ART =

(1/NQ)
∑NQ

i=1(Tf − Ti), where Ti is the time of query issuing, Tf is time of query

completion, and NQ is total number of times the given mCK query was issued.

Note that ART is equivalent to the elapsed time including disk I/O and CPU-time.

3.4.1 Experiments on Synthetic Data Sets

The synthetic data generator generates spatial data points in a random manner.

Each point is randomly distributed in the d-dimensional space [0, 1]d and assigned

a fixed number of random keywords. We fix the number of keywords on each data

point so that it is more convenient to analyze the performance when a data point

is associated with multiple keywords. In our implementation of bR∗-tree, the page

size is set to 4K bytes and the maximum number of entries in internal nodes is

set to 30. However, the number of entries in leaf nodes is set to be the same

with total number of keywords to allow flexibility in handling different number of

keywords. In the implementation of MWSJ, we also use a page size of 4K and set

the maximum number of entries in all nodes at 30. bR∗-tree takes more time than

MWSJ in building the index for two reasons. First, in MWSJ, each tuple is inserted

into a small R∗-tree with the same keyword as the tuple. In bR∗-tree, each tuple

is inserted into the whole tree. This results in much higher cost for each insertion,

including choosing a leaf, invoking more split and AdjustTree operations. Second,

bR∗-tree maintains additional information, such as keywords and keyword MBR,

which need to be updated during insertions.

In the following experiments, we adjust four parameters to generate different

data sets. The parameters are

• TK : total number of keywords in the database;

50

• DS : data size;

• DM : the dimension of data point;

• KD : the number of keywords associated with each data.

In each experiment, we compare the performance of bR∗-tree with MWSJ on dif-

ferent synthetic data sets using ART as the performance metric.

Effect of TK

We ran the first experiment on four data sets to test scalability in terms of the num-

ber of query keywords m. We generated data sets with total number of keywords

50, 100, 200 and 400, respectively. Each data is two-dimensional and associated

with one keyword. In each data set, there are 3,000 data points associated with

the same keyword.

Fig. 4.6 shows the ART of two algorithms with respect to the number of query

keywords. When m is small, we can see that MWSJ outperforms bR∗-tree and this

advantage becomes clearer as total number of keywords increases. It only accesses

m of total N R∗-trees that occupy a small portion of the whole data set. The query

can be processed relatively quickly. However, our search process needs to access

all the nodes in the entire bR∗-tree because the data with different keywords are

randomly distributed in the leaf nodes. This results in relatively poor performance

as compared to that of MWSJ.

As m increases to large values, the performance of MWSJ starts to degrade

dramatically. The search space is expanded exponentially and MWSJ incurs high

disk I/O cost for identifying the candidate windows since it does not inherently

support effective summarization of keyword locations. However, our algorithm

51

demonstrates remarkable scalability as m increases3. Our bR∗-tree summarizes

the keywords and their locations in each node, and this plays an important role

in effectively pruning the search space. The a priori-based search strategy also

restricts the candidate search space from growing too quickly.

Note that the overall performance trend of MWSJ across the four data sets is

similar. The reason is that the data sets have the same number of data points

associated with each keyword and the size of R∗-tree is the same. However, the

performance of bR∗-tree degrades slightly with the increase of data size and total

number of keywords. It integrates all the data points in one tree, leading to a

higher access cost.

Effect of DS

In the above experiment, the number of data points associated with each keyword

is fixed. In this experiment, we fix total number of keywords at 100 and increase

data size from 100,000 to 3,000,000 to examine the performance of bR∗-tree and

MWSJ.

Fig. 3.8 shows how ART increases with data size in answering the same num-

ber of query keywords. When m is small, e.g. m = 3 and m = 5, both algorithms

demonstrate similar rate of increase in ART. The spatial index and the pruning

using active MBR did take effect to suppress the expansion of search space caused

by the increase of data size. However, when m becomes large, e.g. m = 7 and

m = 8, a small amount of increase in the size of the R∗-tree in MWSJ can lead to a

remarkable increase in the search space. We can observe from Fig. 3.8 that MWSJ

becomes sensitive to the increase of data size and the performance declines dra-

3Note that this make our algorithm particularly useful for purpose like geotagging of documents
where a mCK query with large number of keywords are issued by an automatic search algorithm.
In addition, for systems in which the number of keywords in a submitted query can varies greatly,
our approach will provide very stable performance compared to MWSJ.

52

 0

 5

 10

 15

 20

 25

 30

 35

 40

2 3 4 5 6 7 8 9

A
R

T
(s

ec
on

ds
)

m

bR*tree
MWSJ

(a) 50 keywords in total

 0

 5

 10

 15

 20

 25

 30

 35

 40

2 3 4 5 6 7 8 9

A
R

T
(s

ec
on

ds
)

m

bR*tree
MWSJ

(b) 100 keywords in total

 0

 5

 10

 15

 20

 25

 30

 35

 40

2 3 4 5 6 7 8 9

A
R

T
(s

ec
on

ds
)

m

bR*tree
MWSJ

(c) 200 keywords in total

 0

 5

 10

 15

 20

 25

 30

 35

 40

2 3 4 5 6 7 8 9

A
R

T
(s

ec
on

ds
)

m

bR*tree
MWSJ

(d) 400 keywords in total

Figure 3.7: Performance on increasing TK

matically especially when data size is large. In contrast, bR∗-tree scales smoothly

in a stable manner, thereby validating the effectiveness of our search strategy.

Effect of KD

In many applications, a spatial object is associated with a set of keywords rather

than only one keyword. Under a fixed data size, if we increase the number of

keywords associated with each data point, the search space increases as well. For

each keyword, there are more data points associated with it, and hence, a larger

R∗-tree is needed for indexing in the case of MWSJ. However, the size of bR∗-tree

is not affected because the bitmap in the node only gets more bits set, but still

incurs a fixed storage cost.

In this experiment, we generate 1,000,000 two-dimensional data points. There

53

 0

 2

 4

 6

 8

 10

0.1 0.5 1 1.5 2 2.5 3

A
R

T
(s

ec
on

ds
)

data size(106)

bR*tree
MWSJ

(a) m=3

 0

 5

 10

 15

 20

0.1 0.5 1 1.5 2 2.5 3

A
R

T
(s

ec
on

ds
)

data size(106)

bR*tree
MWSJ

(b) m=5

 0

 10

 20

 30

 40

 50

0.1 0.5 1 1.5 2 2.5 3

A
R

T
(s

ec
on

ds
)

data size(106)

bR*tree
MWSJ

(c) m=7

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

0.1 0.5 1 1.5 2 2.5 3

A
R

T
(s

ec
on

ds
)

data size(106)

bR*tree
MWSJ

(d) m=8

Figure 3.8: Performance on increasing DS

are a total of 100 keywords in the data set. We increase the value of KD from one

to six. The results, depicted in Fig. 3.4.1, show that bR∗-tree always demonstrates

good stability when KD increases. However, MWSJ suffers from serious perfor-

mance degradation asKD increases because it does not inherently support effective

summarization of keyword locations. Note that when m = 3, the performance of

MWSJ has a sudden improvement when KD = 3, i.e. each object is associated

with three keywords. An object with all three query keywords is very likely to be

found in the data set giving δ∗ = 0. This greatly facilitates the pruning in the

unexplored search space. When m = 5, this improvement is not shown clearly be-

cause the probability of finding an object with all the query keywords in the early

search stage is low.

54

 0

 2

 4

 6

 8

 10

1 2 3 4 5 6

A
R

T
(s

ec
on

ds
)

#keywords per object

bR*tree
MWSJ

(a) m = 3

 0

 5

 10

 15

 20

 25

 30

1 2 3 4 5 6

A
R

T
(s

ec
on

ds
)

#keywords per object

bR*tree
MWSJ

(b) m = 5

 0

 10

 20

 30

 40

 50

1 2 3 4 5 6

A
R

T
(s

ec
on

ds
)

#keywords per object

bR*tree
MWSJ

(c) m = 7

 0

 20

 40

 60

 80

 100

1 2 3 4 5 6

A
R

T
(s

ec
on

ds
)

#keywords per object

bR*tree
MWSJ

(d) m = 8

Figure 3.9: Performance on increasing KD

Effect of DM

In the above experiments, we only handle two-dimensional data. In some applica-

tions, the data may have multiple attributes and are mapped to higher-dimensional

space. For example, a notebook may be mapped to a five-dimensional value arising

from attributes such as CPU, memory, hard disk, weight and price. The closest

notebooks from different manufacturers may be serious competitors in the market.

Therefore, it is meaningful to test how the algorithms perform on higher dimen-

sional spaces.

We test the performance on three- and four-dimensional data with a small data

size of 50,000. There are 100 keywords in total and each data is associated with

one keyword. The ART results are shown in Fig. 3.10. It is clear that MWSJ

55

performs poorly on higher dimensional data set because its pruning is based on

only the distance constraint. Our bR∗-tree takes advantage of both distance and

keyword constraints of mCK query for pruning and shows much better scalability.

As m increases, the performance of MWSJ rapidly declines and can be orders of

magnitude worse than bR∗-tree.

 0

 10

 20

 30

 40

 50

 60

 70

2 3 4 5 6 7 8 9

A
R

T
(s

ec
on

ds
)

m

bR*tree
MWSJ

(a) dimension = 3

 0

 50

 100

 150

 200

2 3 4 5 6

A
R

T
(s

ec
on

ds
)

m

bR*tree
MWSJ

(b) dimension = 4

Figure 3.10: Performance on increasing DM

3.4.2 Experiments on Real Data Set

We use TIGER (Topologically Integrated Geographic Encoding and Referencing

system) (downloadable from http://www.census.gov/geo/www/tiger) as our real

data set. The data set consists of numerous complicated geographic and car-

tographic information of the entire United States. Since we are concerned with

point data in our mCK query, we simply extract the landmark data, which can be

custodial facility (hospitals, orphanages, federal penitentiaries, etc.), educational,

cultural or religious institutions, etc. Each point in the data set is associated with

a census feature class code to identify its noticeable characteristic. For example,

D85 is the class code for keyword Park.

After cleaning and format transformation on the raw data, we extracted two

data sets, Texas and California, with 15,179 and 13,863 data points, respectively.

56

Table 3.2: Keyword distribution on Texas data set

D1 4 D28 206 D43 1956 D71 75
D10 3 D29 1 D44 6092 D73 1
D20 23 D31 266 D51 364 D81 177
D21 872 D32 3 D53 2 D82 3291
D22 2 D33 34 D61 929 D83 21
D23 167 D35 6 D62 21 D84 1
D24 2 D36 17 D63 21 D85 295
D25 20 D37 5 D64 21 D90 78
D26 26 D41 2 D65 120
D27 44 D42 2 D66 9

Both data sets have dozens of keywords. The distribution for each keyword is highly

skewed. Table 3.2 shows the keyword distribution in Texas. Some landmark may

get thousands of points while others may have only one data point. For example,

D43 represents educational institutions, including academy, school, college and

university. These institutions are widely distributed and are well recorded in the

raw data set. However, landmarks like water tower (D71) are a rarity and only one

such landmark appears in our extracted data set.

In our experiments, we ignore infrequent keywords and submit queries with the

most frequent keywords. Fig. 3.11 shows the ART with respect to the number of

query keywords in both data sets. We can see that bR∗-tree outperforms MWSJ

even when m is small. The reason is that the number data associated with each

keyword is highly skewed. When a query has frequent keywords, MWSJ loses

the advantage of having to access only a small portion of the data set. When m

increases to large values, its performance still degrades dramatically. Our bR∗-tree

not only answers the frequent keywords query in a shorter time, but also exhibits

good scalability. Therefore, bR∗-tree performs significantly better than MWSJ in

answering queries with frequent keywords.

57

 0.01

 0.1

 1

 10

 100

 1000

2 3 4 5 6 7

A
R

T
(s

ec
on

ds
)

m

bR*tree
MWSJ

(a) Texas

 0

 10

 20

 30

 40

 50

 60

2 3 4 5 6 7

A
R

T
(s

ec
on

ds
)

m

bR*tree
MWSJ

(b) California

Figure 3.11: Performance on two real data sets

3.5 Summary

In this chapter, we addressed mCK query, which aims at retrieving m closest

travel services. We used keyword to represent travel service and proposed bR∗-

tree to effectively summarize keyword locations, thereby facilitating pruning. We

also proposed effective a priori-based search strategy for mCK query processing.

Two monotone constraints and their efficient implementations were discussed. Our

performance study on both synthetic and real data sets demonstrates that the

proposed bR∗-tree answers mCK queries efficiently within relatively short query

response time. Furthermore, it demonstrates remarkable scalability in terms of the

number of query keywords. It significantly outperforms existing MWSJ approach

when m is large.

CHAPTER 4

LOCATING WEB RESOURCES BY

SPATIAL TAG MATCHING

In this chapter, we focus on the fundamental application of locating geographical

web resources and propose an efficient tag-centric query processing strategy. The

result is a location that is most relevant to the query tags. In particular, we aim at

finding a set of nearest co-located travel objects which together match the query

tags. Given the fact that there could be a large number of travel objects and tags,

we develop an efficient search algorithm that can scale up in terms of the number of

objects and tags. Further, to ensure that the results are relevant, we also propose a

geographical context sensitive geo-tf-idf ranking mechanism. Our experiments on

synthetic data sets demonstrate its scalability while the experiments using a real

life data set confirm its practicality.

58

59

4.1 Introduction

In Web 2.0, users are free to upload diverse kinds of travel resources and mark them

in the map to indicate their relevance to the area using open map APIs. Such a large

amount of user-contributed materials constitute a luxuriant spatial database that

can provide immense mining opportunities. Effective location detecting technique

has significant commercial potential and can assist the search engine in classifying

and indexing the web resources to improve the relevance of the returned results.

It also plays an important role in providing the customers with local personalized

services. Existing work tackles this problem by mining and extracting phrases that

contain geographical context in web documents or with the aid of hyperlink struc-

tures and query logs when the geographical context is not clear. The ambiguities

on the location names are eliminated via NLP or IR technique to assign the correct

scope so that terms such as “Washington” appearing in “Denzel Washington” will

not be treated as a location name. Despite considerably high accuracy, traditional

methods are still faced with new challenges in the Web 2.0 environment:

• Various types of resources exist in the spatial database. Existing search en-

gines pay particular attention to gazetteer terms derived from web documents.

However, other multimedia resources, such as photos and videos, are not as-

sociated with such terms inherently. Without geographical terms, traditional

approaches may not work well.

• Current geographic information systems typically rely on the gazetteer in-

formation published by authorized communities. In Web 2.0, users have

contributed huge amounts of useful contents collaboratively. A prominent

example is Wikipedia, the most widely used online encyclopedia. There are

abundant implicit geographic information embedded and they should be fully

60

exploited.

In Chapter 1, we introduced a uniform data model for travel resources based on

tagging. Based on this model, an example blog is shown in Figure 1.5. The blog is

associated with user-generated tags and the gazetteer terms in the text body are

shown in bold. We can see that “Philippines” and “Disneyworld” are noisy terms

and not related to the travel destination. This brings challenges to traditional

methods utilizing NLP or IR technique. In this case, we can take advantage of the

associated tags which are of higher quality because noisy terms have been filtered by

human intelligence. The problem now becomes finding a location in Singapore that

best matches the four tags “beach”, “island”, “Palawan” and “wooden bridge”.

Another locating example is shown in Figure 1.6. In this example, the query is

an image from Flickr with annotations. In order to detect the location of the image,

we can use “bull”, “bronze” and “sculpture” to query the spatial database in New

York City and find the best match location. This is similar to locating the travel

blog in the above example. Since we have proposed a uniform mapped resource

model in Chapter 1, the problem of locating mapped resources is essentially a

spatial tag matching problem.

Finding co-locating tags in spatial databases remains an ongoing research prob-

lem. Traditional approaches of keyword search in spatial databases [57, 50, 42, 38]

are seeking for a mapped resource matching all the query tags. However, the num-

ber of tags associated with each object is typically small, making it difficult to find

a complete match. On the other hand, these methods ignore the fact that spatially

close resources could belong to the same object and are related to each other. For

example, news about “New York City airplane river crash” could be marked by

users around the crash location in the Hudson River and photos of “Statue of Lib-

erty” are likely to be uploaded around the Liberty Island. Therefore, instead of

61

looking for one-to-one match, we allow one query object to match multiple spatially

correlated objects as long as the union of their tags can match all the query tags.

The search algorithm in Chapter 3 shows good scalability in terms of the number

of query keywords. However, the proposed bR∗-tree indexing structure requires the

storage of auxiliary information for each possible tag and can therefore potentially

incur high I/O cost when the tag space T is large. In this chapter, we present

a new and efficient index based on the R∗-tree [26] and inverted list. A labelled

R∗-tree is constructed to provide spatial proximity information and the inverted

list is used as a partition of the tag space T . The augmented summary information

is not stored but built dynamically during the search process to make the index

light-weight. We design a bottom-up search algorithm to utilize the inverted index

so that only the related lists will be accessed. Since the I/O cost has been greatly

reduced, the new indexing and searching technique can ensure scalability in terms

of both the number of query tags m and the data size within a large tag space T .

In addition to the efficiency issue, we also address the issue of semantic relevance

by proposing a re-ranking mechanism for co-located tags that are found within the

top-k closest scope. To this end, we have to take into account the geographical

context in the ranking process. There exist works in [47, 24] that proposed geo-

ranking mechanism using local popularity of web resources measured by citations.

However, the hyperlink structure among the resources is not available in our data

model. In the recent works of [42, 38], Cong et al. proposed to retrieve the

most relevant spatial web objects by considering both the distance proximity and

text relevance in the ranking function. However, the text relevance is still between

query keywords and each single spatial web document. In this chapter, we present a

more general ranking method that takes nearby resources into account as well. We

extend the widely used tf-idf and propose a new ranking strategy, named geo-tf-idf,

62

to measure how the tags are related to the area that they are located in.

In summary, the main contributions of the work include:

• We propose to use tags to build a general data model. Based on the model,

we describe a system framework to support co-location searches on various

types of resources in Web 2.0 applications.

• We develop an efficient indexing and searching strategy, which is scalable in

terms of both the number of query tags and the data size of resources, to

answer the queries of co-located tag matching.

• We extend the widely accepted tf-idf method for the geographical context,

called the geo-tf-idf ranking method, to measure the relevance of the geo-tags

with respect to the area in which they are located.

• We conduct extensive experiments using synthetic and real life data sets.

The results confirm the effectiveness and practicability of our proposal in the

context of Web 2.0 applications.

The remaining of this chapter is organized as follows. Section 4.2 introduces

the improved index and search strategy. Section 4.3 proposes the geo-tf-idf ranking

mechanism. Section 4.4 presents our performance study on the synthetic and real

life data sets. Finally, the chapter is concluded in Section 4.5.

4.2 Spatial Index and Search Algorithm

4.2.1 Light-weight Index Structure

In Web 2.0 context, users can continuously contribute new resources to the map. On

one hand, there will be increasing number of locations. On the other hand, in each

63

R2

R3 R4 R5 R6

ba a

loc1 loc5

loc2 loc3 loc4 loc6 loc8

loc3 loc4 loc6 loc7

loc7

R1

a a aa a a

a a a

aa

a

a

a

a

a

a

b b b b b b b

b

b

b

bbb

b

b

b

b b

b b

b b

a a b

loc8

aa loc1 a a loc2 b a loc5

b

Figure 4.1: The index of R∗-tree and inverted index

location, the number of associated tags will increase as well. Thus, it is essential

for the proposed index structure to be scalable enough to handle large number

of locations and tags. To achieve this goal, we do not maintain the additional

summary information. Moreover, we do not integrate all the locations and tags

into one tree structure. Instead, we split them into two components: a spatial

index and an inverted index, as shown in Figure 4.1. This also ensures that the

proposed index could be grafted into existing commercial systems easily.

The R∗-tree is used to index all the spatial locations associated with tags. It

is constructed in the same manner as described in [26] except that each node is

assigned a label indicating the path to the root node. In our example, node R3

and R4 are both labelled as “a” because they share the same path to the root

node’s first entry. Similarly, R5 and R6 are labelled with “b”, which represents the

second entry in the root node. Given a node label, we can judge where the node is

located in the R∗-tree without accessing the tree. Two locations close to each other

probably have the same prefix of node label. If they lie in the same internal node,

they will be assigned the same label. Thus, the label can be used to approximate

64

the spatial distance between the data points.

An inverted index is built along with the R∗-tree. It maintains inverted lists

for all the tags in the database. Each element in the list consists of node label

derived from the construction of R∗-tree and its actual location. Note that the list

is ordered by the location label so that the data points close to each other in the

geographical space are probably still close in the inverted lists.

Such an index is scalable in terms of both the number of locations and tags.

Each time a new location is marked in the map, it is inserted in the labelled R∗-tree.

The function ChooseSubtree in [26] is first invoked to find a leaf node to accom-

modate the location. If there exist empty entries in the node, the location point

is inserted and assigned with the node’s label. The inverted lists of the associated

tags can also be updated at a small cost as the elements have been ordered. Other-

wise, split occurs in the overflowing node and the changes are propagated upward

the tree. Besides the MBR adjustment, we need to update the label of nodes as

well as the elements in the inverted lists assigned with the old label. Suppose the

propagation stopped at node N labelled l1l2...lt, all the descendent nodes of N will

be re-labelled. Meanwhile, the elements in the affected inverted index whose labels

start with l1l2...lt are also updated. Since the lists have been ordered, it is conve-

nient to retrieve the list segment with this prefix. However, if the insertion occurs

frequently, ensuring correct label will be computationally expensive. As we do not

require accurate labelling in our search algorithm, we can adopt a lazy approach

in which we will delay the update of the labels. The location’s label is buffered

before the split operation. The affected part of R∗-tree will be updated in a batch

manner using the buffered information to ensure an acceptable cost. The case of

inserting a new tag is much simpler. A new inverted list is created for the new tag

and then its location and label can be inserted into the list.

65

R2R1

Query :

a a a ab

R3
a

R5
b

aba aaa

R3
a

R5
b

abaa a aa

Figure 4.2: Bottom-up construction of virtual bR∗-tree

In contrast to the index in Chapter 3, such a light-weight index saves a large

amount of I/O cost compared to indexing all the tags and locations into one bR∗-

tree. Given a set of query tags, only the relevant location lists are retrieved. The

following subsection will introduce how mCK query can be answered on top of

inverted lists without even accessing the spatial index. The index can also be

utilized to answer queries in which the user specifies a bounding region. We traverse

down the R∗-tree as much as possible while ensuring that the node MBR bounds

the query region completely. Using the label of such a node, we filter off all data

points that are not prefixed with this label. The retrieval cost is small as the labels

in the lists have been ordered. Then, a further check is performed to see if the data

point is within the query region so as to obtain the correct result.

4.2.2 Bottom-Up Search Algorithm

Given m query tags, we retrieve m lists of data points that match the tags from

the inverted index. A naive solution to this problem is to exhaustively examine all

possible sets of m tuples from different lists. This is prohibitively expensive when

the number of objects and/or m is large. To take advantage of the spatial informa-

tion embedded in the label, we instead propose an elegant solution by constructing

a virtual bR∗-tree using the label and location of the data points.

66

The virtual bR∗-tree is built level by level in a bottom-up manner as illustrated

in Figure 4.2. At first, m inverted lists corresponding to the query tags are retrieved

and merged into one list ordered by the node label. The cost of this merge sort

is linear to list size. We traverse the sorted list and fetch all the data points with

the same label. These points are used to construct a new virtual node which has a

counterpart in the original R∗-tree. Note that the MBR of the virtual node is much

smaller than its counterpart as it is built on the points relevant to the query. For

each virtual node, we maintain the additional information: the keyword bitmap

and the keyword MBR to summarize the keywords and their distribution inside

the virtual node. Compared to the bR∗-tree proposed in Chapter 3, the node size

has been greatly reduced to save the I/O cost and allows virtual bR∗-tree to handle

a database with a massive number of possible tags. In addition, the a priori-based

search strategy can still be applied in the virtual bR∗-tree.

Algorithm 6 Bottom-Up Search Strategy

Input: m query tags, inverted index
Output: Distance and location of m closest keywords
1. Retrieve m inverted lists for each query tag
2. Merge the lists into one list L ordered by the label
3. Initialize a virtual node cur node
4. while L.level < tree.height do
5. for each element vnode in L do
6. if vnode has the same label with its previous element then
7. add vnode into cur node
8. else
9. SubsetSearch(cur node)
10. add cur node to List L′

11. move L′ to L

The detailed search algorithm is shown in Algorithm 6. Each time a virtual

node is constructed, it will be treated as a subtree and the pruning algorithm

SubsetSearch proposed in Chapter 3 could be applied in this virtual node. The

difference is that the search space will exclude the single child node that matches

67

all the query tags. As our search strategy is bottom up, the space within the node

must have been explored. Fig 4.3 shows the order of NodeSet candidates checked

in the top-down and bottom-up search algorithm respectively. The bottom-up

strategy can access the leaf nodes earlier than top-down method and get a smaller

δ∗ first. In overall summary, the bottom-up search demonstrates better scalability

because it only accesses a small virtual bR∗-tree and in the meanwhile preserves

the effective pruning strategy.

Order 1 2 3 4 5 6

Top-down R1 R3 R2 R5 R1R2 R3R5

Bottom-up R3 R5 R1R2 R3R5

Figure 4.3: Order of NodeSet candidates checked

4.3 Ranking

The results returned by mCK search algorithm only consider the spatial closeness

while ignoring the geographical relevance. In this section, we propose a new ranking

mechanism, namely geo-tf-idf, which extends the classic tf-idf ranking to be applied

in a geographical context.

tf-idf [25, 102, 78] has been widely adopted in search engines to measure the

importance of a keyword with respect to a document in a collection or corpus. In-

tuitively, score(k,D) will be assigned a higher value if keyword k occurs frequently

in document D and infrequently in other documents. Formulae 4.1-4.5 shows the

ranking mechanism with normalization of document length and frequency taken

into account:

68

score(Q,D) =
∑

k∈Q

weight(k,Q) ∗ score(k,D) (4.1)

score(k,D) =
tf(k,D)

dl
∗ idf (4.2)

tf(k,D) = 1 + ln(1 + ln(freq(k,D))) (4.3)

dl = (1− s) + s ∗ dl(D)

avgdl
(4.4)

idf = ln
N

df + 1
(4.5)

The term weight of k with respect to Q is usually measured by the raw term

frequency in Q. The documents with higher ranking scores will be considered as

more relevant to the keywords. Similarly, we can define our score function of a

geographical area R with respect to query Q, as shown in Formula 4.6.

score(Q,R) =
∑

k∈Q

weight(k,Q) ∗ score(k, R) (4.6)

The problem becomes how to measure the importance of a tag k with respect

to an area R. Inspired by the intuition behind tf-idf, we propose an extended

ranking mechanism used in geographical context. A higher score will be assigned

to score(k, R) if the tag t and area R satisfy the following properties:

1. The tag t appears frequently around the area of R. For example, tourist

travelling in Beijing will probably take a visit to Forbidden City. There will

be many photos and blogs tagged with “Forbidden City” uploaded in the

map. Thus, this tag is closely related to Beijing city.

2. The tag t is not frequently mentioned in areas other than R. Although

69

“Forbidden City” may appear in other travel blogs not located in Beijing,

such cases are typically rare. Beijing will be assigned with a high score with

respect to “Forbidden City”.

In IR systems, the information unit is a document. While in our uniform data

model, the concept of document is vague. Each location point is associated with

a set of tags. Distinct resources located at the same point can constitute a large

virtual document with the tags merged. If there are no resources in the nearby

area, we can apply traditional tf-idf to measure the weight between keyword k and

location p:

inw(k, p) = score(k,D) (4.7)

,where D is the merged tag “document” located at point p. However, in real

Web 2.0 applications, the resources are contributed and uploaded by users. The

resources on the same topic will gather around the actual location. The score value

on a point location p can not completely capture the geographical context. We

need to take into account nearby resources.

In order to measure the effect of tag t in location p to its nearby areas, we build

a degradation model as shown in Figure 4.4(a). The keyword will affect mainly

the nearby regions. The regions far away are considered irrelevant to the tag. We

may use Gaussian function in Figure 4.4(b) to describe such degradation. Suppose

the d-dimensional space has been normalized into [0, 1]d, the relevance of keyword

k located at p with respect to area R can be measured via the following formula:

score(k, p, R) =

∫

q∈R
{inw(k, p) ∗ f(dist(p, q))}

1 + ln(area(R))
(4.8)

, where f is the degradation function. The intuition behind the definition is that

if the area is small and close to the keyword, a higher score will be assigned. If

70

the area is large, the effect of the keyword on the whole region will be scaled down

accordingly. Thus, R2 is more relevant to k than R1 in example of Figure 4.4(a). If

there are multiple occurrences of keyword k in the spatial database SD, the final

score will sum up all the effect of k on the area of R:

score(k, R) =
∑

p∈SD

score(k, p, R) (4.9)

R1

R2

(a) Keyword weight degra-
dation model

1

f

x

(b) Keyword weight degra-
dation function

Figure 4.4: Degradation of keyword spatial importance

4.3.1 Approximate Ranking Mechanism

In real applications, it is expensive to calculate the exact weight of a region with

respect to a keyword. To save the computation cost, we propose an approximate

scoring mechanism.

In our approximation model, the space is split into grid cells and region R

is approximated by a minimum set of cells that can bound it. The degradation

function no longer decreases continuously to 0. Instead, as shown in Figure 4.5(b),

we use the grid cell as basic unit. The weight of the grid that holds point p

is assigned with constant α and the neighboring grids are assigned with constant

β(1 ≥ α > β > 0). The remaining grids are considered not relevant to the keyword.

The weight of keyword k with respect the cell C becomes:

71

α
β β β

β
ββ

β
β

(a) Grid degradation model

α
β

(b) Grid degradation func-
tion

Figure 4.5: Approximate model for degradation of keyword spatial importance

score(k, C) =

α ∗ ∑
p∈C

inw(k, p) + β ∗ ∑

C′∈NC

∑

p∈C′

inw(k, p)

3d
(4.10)

,where NC are the neighboring cells of C. Such a definition will assign higher value

to score(k, C) if k frequently appear in C as well as its neighboring cells. Finally, a

normalization process similar to idf is proposed to reduce the effect of the general

tag that occurs all over the grid:

igf(k) = ln
|G|

dg(k) + 1
(4.11)

,where |G| is the total number of d-dimensional grid cells and dg(k) is the number

of grids containing the keyword. Given all these formulae, the ranking score of k

with respect to its location can be approximately defined as :

score(k, R) ≈

∑

C∈R

score(k, C) ∗ igf(k)

|C| (4.12)

,where R is approximated by a set of cells C. Such an approximation takes the

nearby documents into account. In our experiments, we will provide further analysis

of the ranking mechanism.

72

4.4 Experiment Study

This section provides an extensive performance study on both synthetic and real

data sets in order to evaluate the scalability of our query processing strategy as

well as its practical utility.

We incrementally generate large synthetic data sets to simulate those from Web

2.0 applications. Meanwhile, real data sets extracted from online photo sharing

applications are used to testify the practical utility of mCK query in local services

and resource locating. All of our experiments are conducted on a server with Quad-

Core AMD Opteron (tm) Processor 8356, 128GB memory, running RHEL 4.7AS.

4.4.1 Experiments on Synthetic Data Sets

Synthetic data sets are generated to simulate real-life applications in two aspects.

First, in successful commercial applications, there are millions of users who create

large amounts of resources. Hence, the data size we generate must be large scale.

Second, the database expands continuously as new resources are added in by differ-

ent users. Thus, scalability in terms of the number of locations and their associated

tags becomes an essential issue. Our experiments are performed on synthetic data

sets with millions of locations and thousands of tags. All the spatial data points are

generated in a d-dimensional space [0, 1]d in a random manner. For most mapping

applications, d is usually set as two. Each data point is randomly assigned with a

fixed number of tags.

We compare our new virtual bR∗-tree against the one proposed in Chapter 3

and MWSJ [89] in answering mCK query. These two algorithms retain the same

settings as before. The average response time (ART) is used as our performance

metric. In the following experiments, we compare the scalability in terms of m, the

73

number of locations and the associated tags.

Scalability in terms of m

In this experiment, we randomly generate two data sets with 5,000,000 and 10,000,000

location points respectively. There are in total 5, 000 tags in the database and each

point is associated with 5 random tags. The number of query tags submitted is

varied from 3 to 8.

Figure 4.6 illustrates the average running time of the three algorithms. The

bR∗-tree proposed in Chapter 3 shows reasonable scalability as m increases. How-

ever, since the tree maintains auxiliary information in each node, this leads to

extremely high I/O cost. The index occupies more than 4GB disk storage while

our inverted index only takes up 527MB for the data set with 5, 000, 000 points.

The performance of MWSJ shows the same pattern as in Chapter 3. When m is

small, the query can be answered efficiently. When m is increased to larger values,

the performance starts to degrade due to the exponential expansion of the search

space. Our virtual bR∗-tree demonstrates advantage over the other two algorithms.

This is due to the improved index structure as well as the efficient pruning strategy.

In the following two experiments, we only compare the performance with MWSJ

as the original bR∗-tree is not suitable for handling data set with a massive number

of tags.

Scalability in terms of the number of locations

In order to simulate the real applications in which new resources are continuously

marked in the map, we generate the synthetic data sets with the size increasing

steadily from 5, 000, 000 to 10, 000, 000 data points. The number of tags associated

with each point is fixed as 5. Figure 4.7 shows the performance trend as the data

74

 0.1

 1

 10

 100

 3 4 5 6 7 8

A
R

T
(s

ec
on

ds
)

m

Vitural bR*-tree
MWSJ

bR*-tree

(a) 5,000,000 data points

 0.1

 1

 10

 100

 1000

 3 4 5 6 7 8

A
R

T
(s

ec
on

ds
)

m

Vitural bR*-tree
MWSJ

bR*-tree

(b) 10,000,000 data points

Figure 4.6: Scalability in terms of m

size increases.

When m is small, both algorithms demonstrate similar growth rate in running

time. The spatial index does take effect to suppress the expansion of search space.

However, asm increases, the performance of MWSJ becomes sensitive to the growth

of data size. The reason is that the search space grows substantially with the data

size. A small amount of increase in data size can lead to remarkable expansion

of the search space. In contrast, our virtual bR∗-tree is able to scale in a stable

manner.

Scalability in terms of the number of tags

In real applications, new tags can be added to describe a particular resource. In this

experiment, synthetic data sets are generated to simulate the growth in the number

of tags. Here, we increase the number of tags associated with each location from 1

to 9. The spatial database contains 5, 000, 000 data points and 5, 000 different tags

in total.

The two algorithms in Figure 4.8 present similar growth rate to that in Figure

4.7 in terms of response time. Their performance is good whenm is small. However,

MWSJ suffers from serious degradation in handling large numbers of query tags

because it does not inherently support effective summarization of tag locations.

75

 0

 2

 4

 6

 8

 10

5 6 7 8 9 10

A
R

T
(s

ec
on

ds
)

data size(106)

Vitural bR*tree
MWSJ

(a) m = 3

 0

 2

 4

 6

 8

 10

5 6 7 8 9 10

A
R

T
(s

ec
on

ds
)

data size(106)

Vitural bR*tree
MWSJ

(b) m = 5

 0

 10

 20

 30

 40

 50

5 6 7 8 9 10

A
R

T
(s

ec
on

ds
)

data size(106)

Vitural bR*tree
MWSJ

(c) m = 7

 0

 20

 40

 60

 80

 100

5 6 7 8 9 10

A
R

T
(s

ec
on

ds
)

data size(106)

Vitural bR*tree
MWSJ

(d) m = 8

Figure 4.7: Scalability in terms of the number of locations

Our virtual bR∗-tree, on the other hand, demonstrates good scalability.

Note that the virtual bR∗-tree performs slightly better with respect to the

growth in the number of tags compared to the growth in number of locations.

The reason is that the virtual node in the bR∗-tree maintains a bitmap indicating

the query tags within. The insertion of a tag into an existing location will only

trigger the setting of the bit in the bitmap. However, the insertion of new locations

leads to a larger labelled R∗-tree. Therefore, more virtual nodes will need to be

created during the search process.

76

 0

 0.5

 1

 1.5

 2

 2.5

 3

1 3 5 7 9

A
R

T
(s

ec
on

ds
)

tags on each point

Vitural bR*tree
MWSJ

(a) m = 3

 0

 2

 4

 6

 8

 10

1 3 5 7 9

A
R

T
(s

ec
on

ds
)

tags on each point

Vitural bR*tree
MWSJ

(b) m = 5

 0

 10

 20

 30

 40

 50

1 3 5 7 9

A
R

T
(s

ec
on

ds
)

tags on each point

Vitural bR*tree
MWSJ

(c) m = 7

 0

 10

 20

 30

 40

 50

 60

 70

 80

1 3 5 7 9

A
R

T
(s

ec
on

ds
)

tags on each point

Vitural bR*tree
MWSJ

(d) m = 8

Figure 4.8: Scalability in terms of the number of tags

4.4.2 Experiments On Real Data Sets

Our real data set is generated via the Flickr service API1 and Picasa Web Albums

Data API2. We extract all photos in New York that are tagged and geo-marked.

Resources located at the same coordinates are merged into the same tag list. After

removing the infrequent tags, the database consistes of 74, 774 location points from

Flickr and 6, 729 points from Picasa Web. There are 12, 636 tags in total.

Based on our observation, the geo-tag data set is of acceptable quality. Most

of the photos are assigned with relevant tags and are correctly marked in the map.

The geo-tags are usually distributed in the form of spatial clusters. These clusters

can be utilized to identify the locations of popular resources and events because

related tags will emerge around that area. For instance, as shown in Figure 4.9,

1http://www.flickr.com/services/api/
2http://code.google.com/apis/picasaweb/overview.html

77

Figure 4.9: Distribution of tag “zoo”

Figure 4.10: Distribution of tag “USOPEN”

the tag “zoo” is mainly distributed in three spatial clusters corresponding to Bronx

Zoo, Central Park Zoo and Queens Zoo Wildlife Center respectively. Similarly, in

Figure 4.10 there are a large number of “USOPEN” tags gathering around the

Arthur Ashe Stadium where the tennis match is held. This phenomenon provides

us with new opportunities to locate resources in a more precise geographical scale.

In the following experiments with real data set, we design a set of queries using

tags or photos as the input. These queries are mainly for locating local services.

78

Tag Query

In this experiment, users propose query tags from the perspective of finding local

service, including restaurant, museum, shopping, recreation center, viewing site,

local news and so on. As shown in Figure 4.11, fifteen example queries are listed

and the results are compared against Google Maps. These local service queries can

be divided into three categories:

Type Tag Query Google mCK

I liberty statue
√ √

marc jacobs store
√ ×

restaurant seafood sashimi
√ ×

bar cocktail jazz player × √

museum dinosaur fossil
√ √

tennis court Williams champion × √

II weapon factory × ×
river airplane crush

√ √

campus Barack Obama × √

park river fishing × √

recreation bowling billiard
√ ×

square fountain roller skating × √

III applestore subway
√ √

supermarket gas station
√ ×

hotel church catholic historic × √

Figure 4.11: Example tag queries

• The first type of queries is landmark query, such as “Statue of Liberty” and

“Marc Jacobs Store” in our examples. Google Maps can answer this kind of

queries effectively as an enormous number of landmarks have been correctly

maintained in the database. Each time a query is submitted, it will first

look for gazetteer terms so as to reduce the search space. Our mCK query

strategy can correctly give the result for “Statue of Liberty” because this is a

famous viewing site in New York City and many photos have been tagged and

marked around the statue. However, no result is returned for “Marc Jacobs

79

Store” as no geo-tagged photos about “Marc Jacobs” exist in our data sets.

• The second type of query is seeking for a subject associated with constraint

features, persons or events that users are interested in. If the association is

common and straightforward, such as a restaurant with seafood and sashimi,

a museum with dinosaur fossil and recreation center with bowling and billiard,

Google Maps is a good choice. However, this search engine is not suitable for

locating subjects with complicated features like “tennis court where Williams

won the champion” and “bar with cocktail and jazz player”. In contrast, our

mCK query can answer most of the queries as long as the target location

is well tagged. For the infrequent tags in our data set, such as “sashimi”,

“recreation”, “billiard”, it is difficult for them to occur simultaneously with

other query tags in the same location. Thus, no related results are returned.

The other problem with mCK query is that it can not guarantee that the

results returned are related to the same subject. In the query “weapon fac-

tory”, Knitting Factory, a music club and concert house, is returned. The

reason is that there are no available weapon factories in the database and it

happens that there is a poster about weapon on the door of the music club

so that the two tags “weapon” and “factory” become connected.

• The third type of query differs in that spatial constraint is embedded. For

example, the query “applestore subway” aims to find the apple retail stores

near the subway. Similarly, the query “supermarket gas station” intends to

find a supermarket and gas station close to each other. Google Maps is able

to answer these two queries because the result returned happens to contain

all the query tags. It can not capture the spatial constraint so as to answer

queries like “find a historic catholic church with hotels nearby”. Our mCK

in essence is proposed to answer this type of query. The quality of the search

80

result relies on the quantity of tags contributed by users.

Figure 4.12 illustrates some results of example queries returned by mCK and

Google Maps. We can observe that Google Maps pays more attention to tags with

geographical context, such as college and church. The other keywords used as

features or spatial constraints are ignored. Thus, its results can not capture the

correct query subject or a user’s intention. Our mCK query takes all the tags into

account and find a location matching all of them. Such a query mechanism is able

to capture the complete meaning and return satisfactory results.

Query Tags mCK Google Maps

BarackObama

campus

Columbia University

Campus Description: 12 acre Yeshiva College

campus in uptown Manhattan Stern College

Business at both campuses... a2zcolleges.com

Yeshiva University Main Campus

campus in midtown Manhattan Sy Syms School of

hotel

church

catholic

historic

St Patrick’s Cathedral

Latin Catholic - 2 NYC Cathedrals The people

usually known as ”Roman Catholics” - the historic

of the Pope ...fordham.edu

Old St Patricks Cathedral School

Church of the West under the immediate supervision

Figure 4.12: Example results returned by mCK and Google Maps

Ranking Mechanism

In this part, we provide more in-depth analysis of our ranking strategy. As men-

tioned, we assign higher value to score(k, R) if keyword k appears frequently around

R and infrequently in other locations. Such keywords usually refer to the distin-

guishing and prominent entities. To achieve this goal, the primary issue is to

determine the size of the grid cell. The setting of this parameter is closely related

to the specific services being provided. Precise location at the level of a shop or

81

sculpture desires a small cell size. Otherwise, we can allow larger cells to save

maintenance cost. Note that hierarchy grid structure can be designed to support

locating services at different geographical scales. In our experiment on the New

York data set, the grid is split into 500× 500 cells.

Fig 4.13 shows the ranking scores of query tags with respect to the detected

location. The bold tags “crash”, “catholic” are important and prominent subjects

or features in that location. Although tags like “river” and “hotel” also appear

frequently, they are not distinguishing enough. These tags spread round the city

and the igf (inverse grid frequency) takes effect to assign lower scores to them.

In addition, we can tell from the figure that most feature tags are assigned with

moderate scores.

t8 airplane crash river
141.221 217.448 118.497

t15 hotel church catholic historic
114.849 214.979 685.173 45.2946

Figure 4.13: Ranking score for tag query

The last essential issue about ranking is the weights of the query terms. In de-

fault, the query tags are assigned with equal weights. When the results returned are

not satisfactory, users are allowed to adjust the weights to highlight the important

terms to better identify their intention. For example, given query tags “fountain,

square”, a famous square with a fountain may be returned as the square may be

frequently tagged, leading to a dominating score. If the user is actually searching

an ornate fountain in a square, he can increase the weight of “fountain”. If the

fountain is the prominent scene, it is likely to be more frequently tagged than the

square where it is located and the famous fountains will be returned.

82

Accuracy

To further test the accuracy of resource locating, we invite a group of volunteers

to generate local service queries for us and verify whether the returned results

are satisfactory or not. Since our data set is still too small to meet with daily

needs, we extract frequent tags and ask the volunteers to create the query from the

combination of these tags. All the 50 queries are shown in Fig 4.14.

sunrise hotel hospital plaza dinner movie island waterfall weapons factory

wedding church gold sunset beach rockband beer waterfall ferry weapon museum

orange lamp library historic architechture historic museum pizza plaza sunset lake

waterfalls hotel fireworks square bridge train river fishing dogs pet shop

garden cafe monument square movie theatre kids playground dinner plaza chicken

baseball stadium sunset skyline sunset boat sea tennis usopen iphone gallery

beach guitar moon dance rock band fish market fashion jewelry shop architecture museum

sexy girls flower exhibition bronze statue towers lamp ice cafe pizza

island moon bowling beer dinner girls gold shoes shop 911 monument japanese restaurants

vocation island ice stadium park band bass historic movie theater museum pizza

Figure 4.14: Local service queries

In this experiment, we first use the Flickr data set and later add in the Picasa

Web data set to examine whether the idea of mashup works. The accuracy results

are shown in Fig 4.15. When there is only one data set, mCK query only performs

slightly better than Google Maps. The reason is that mCK seeks for a location

matching the query tags but these tags are possible to be associated with different

unrelated subjects. If multiple data sources from other applications are combined,

it is more likely for the related query tags to appear in the same location and their

distance becomes 0. As such, we obtain an improvement in accuracy when the

Picasa Web data set is incorporated.

Photo Query

In this experiment, we discuss how to locate a photo using mCK query. Given a

photo, the semantic objects as well as their features can be extracted via human

intelligence and represented as query tags. These tags are close to each other in

83

 0

 20

 40

 60

 80

 100

Flickr
Google Maps

Flickr+PicasaW
eb

Google Maps

Figure 4.15: Accuracy result

the physical space. Google Maps is not suitable to handle such queries because it

is unable to capture the spatial constraint. Thus, we try to solve the problem by

submitting an mCK query using the extracted tags.

As different query tags extracted from the same photo may result in different

matching locations, the selection of extracted tags becomes an important issue.

Based on our experiments of the query photos in Fig 4.16, we observe that:

• Distinguishing tags are preferred as they can help to reduce the search space.

For example, in the second query, “skyscraper” is a frequent tag that appears

around the downtown of New York City and leads to many candidates. How-

ever, “mast” is a distinguishing keyword as it is found in limited locations.

The search space can be further reduced through the spatial constraint that

the skyscraper is near the mast.

• The number of candidate locations can be reduced by adding new query tags.

When there are no distinguishing features embedded in the photo, users can

provide more tags from the image to eliminate false positive. For instance,

in the first photo query, all the four query tags are widely distributed in New

York City. Their spatial constraint assists us in detecting the correct location.

Missing any of the query tags could lead to a false result.

84

Other types of resources, such as blogs, news and videos, can also be located

in a similar manner. As long as the resource is concerned with a local area, their

associated tags are likely to spread around that area. Therefore, mCK is a useful

query in detecting geographical context of mapped resources.

park square

arch fountain

Washington Square Park

skyscraper seaport

boat mast

Near Brooklyn Bridge

bull bronze

sculpture

Wall Street Bull

Figure 4.16: Example photo queries

85

4.5 Summary

In this chapter, we addressed the new emerging problem of locating mapped re-

sources in Web 2.0. We proposed that we can use tags to build a general data and

query model to support co-location searches by tag matching. The data resources

from different applications can be combined and integrated into the labelled R∗-tree

and inverted index. Efficient search strategies are developed to effectively answer

the tag matching query. We have also proposed a new geo-tf-idf ranking mechanism

to measure the geographical relevance. Extensive experiments using both synthetic

and real life data sets confirm the feasibility and efficiency of our proposed design

in the Web 2.0 environment.

CHAPTER 5

LANDMARK RECOGNITION USING

HASHFILE

Content based matching method is normally used to detect the geographical context

of web resources when tag is not available. In this chapter, we focus our problem on

detecting geographical context of images or in other words, landmark recognition.

With the increasing popularity of personal digital photography and online photo

sharing, landmark recognition becomes an important interface to the vast collection

of landmark photos. Typically, the problem is solved by comparing the input photo

with all the photos in the database, which is essentially a nearest neighbor query.

In this chapter, we propose a novel index structure, named HashFile, for effi-

cient retrieval of multimedia objects. It combines the advantages of random projec-

tion and linear scan. Unlike the LSH family in which each bucket is associated with

a concatenation of m hash values, we only recursively partition the dense buckets

and organize them as a tree structure. Given a query point q, the search algorithm

86

87

explores the buckets near the query object in a top-down manner. The candidate

buckets in each node are stored sequentially in increasing order of the hash value

and can be efficiently loaded into memory for linear scan. HashFile can support

both exact and approximate NN queries. Experimental results show that HashFile

performs better than existing indexes in answering both types of NN queries.

5.1 Introduction

Due to the proliferation of Web 2.0 social and community systems, a large number

of multimedia objects are publicly available. Efficient access to such multimedia

objects needs to be supported in order for the web users to benefit from such data.

In this chapter, we study the problem of nearest neighbor (NN) search, which is an

essential query in many multimedia retrieval applications. We investigate process-

ing strategies for both exact and approximate NN queries. The former has wide

applications in similarity search, pattern recognition, clustering and classification.

The latter is particularly suitable for efficient retrieval in a large scale database at

the risk of certain loss in quality.

The most common and straightforward method for solving exact NN problem is

based on hierarchical space partitioning, resulting in various kinds of tree structure

indexes [94, 64, 29, 77]. The multi-dimensional feature space is split into smaller

partitions and organized as a tree structure. Data close to each other are grouped

in the same node so that they can be pruned together without accessing each in-

dividual point inside. However, the pruning power of these indexes decreases as

dimensionality grows and most of the tree nodes will be accessed, taking consider-

able CPU and I/O cost. In this case, the performance of existing index structures

degrades rapidly and even becomes worse than a simple sequential scan of the

88

data [110, 30]. Due to this curse of dimensionality, it is difficult to build indexes

to efficiently answer exact NN queries.

To provide efficient similarity search, the research community has focused on

approximate NN search in recent years. Among various efforts, locality sensitive

hashing (LSH) [60, 53] and its variants have received considerable attention. The

LSH family adopts hash functions that preserve the distance in the Euclidean space

so that similar objects have a high probability of colliding in the same bucket. If

there are l hash tables and each table Hi is associated withm hash functions Gij, an

object o will be hashed to H(o) = [h1, h2, ..., hl], where hi = Gi1(o)Gi2(o)...Gim(o).

Given a query object q, the search space includes the buckets in the l hash tables

where q is located. All the objects in these buckets are scanned to return the

approximate NN result. As m increases, the bucket size becomes smaller and more

false positives are removed. Precision increases but recall degrades. Similarly, as

l increases, more buckets are examined. Recall is improved but precision may

become worse. Thus, the main challenge of LSH is to tune a good tradeoff between

precision and recall. To achieve a high search accuracy, hundreds of hash tables are

normally used [53] and require a large amount of memory space. In [83], multi-

probe LSH was proposed to reduce the number of hash tables and obtain the same

search quality. Since multi-probe LSH is adhoc and without theoretical guarantee,

Tao et al. have recently proposed the locality sensitive B-tree (LSB-tree) [105]

to ensure both quality and efficiency. The drawback of LSB tree is that it uses

random I/O access, which requires a considerable number of disk accesses when

the database is large.

To support efficient NN query processing, we propose a novel index structure,

named HashFile, based on the following three observations:

1. In LSH, the hash function is likely to place most of data objects into the

89

buckets near the mean hash value, resulting in a skewed distribution of bucket

size. When m increases, the dense buckets can be recursively partitioned

to reduce the number of false positives. However, other buckets containing

fewer points will be partitioned as well. Since the data points inside these

buckets are well separated from others, further partitioning will generate a

large number of very small buckets and the quality of the approximate results

may degrade.

2. Expanding the search space by inspecting neighboring buckets can signifi-

cantly improve the result quality [83, 71] because some missing nearest neigh-

bors can be retrieved in this way without building a new hash table. Although

such a method is adhoc and without theoretical guarantee, we argue that the

theoretical bound obtained by previous works [60, 105] is too loose to be ap-

plied in practice. For example, LSB-tree only guarantees 4-approximate NN

with at least constant probability. In other words, the distance of NN result

returned by LSB-tree can be guaranteed to be within 4 times of the real best

distance.

3. Disk page access method plays an important role in the cost of the index look-

up [27], especially for high dimensional data. The time of random access is

higher than that of sequential access by many times.

In our implementation, the entire data set is first hashed into a set of buckets

like LSH. The dense buckets are fetched and re-hashed so as to further separate the

objects inside to remove the false positives. The remaining buckets only contain

a small number of points and will not be further partitioned. The process will

be repeated until there is no dense bucket. In this manner, the distribution of

the bucket size is much more balanced than that generated by LSH. We organize

90

HashFile as a tree structure and each node is associated with a unique hash function

as well as a data file to store the buckets that can not be further partitioned. These

buckets are stored in increasing order of the hash value for linear scanning. We

propose a dynamic bucket allocation strategy to guarantee a minimum storage

utilization of 50%. Given a query point q, the search algorithm explores the tree in

a top-down manner and only retrieves those pages around the query object. The

candidate pages in each file are retrieved using sequential scan, with a single disk

seek operation followed by the data transfer.

We choose random projection as our hash function. This is because it is simple,

database-friendly [15] and yields comparable results to conventional dimensionality

reduction, such as PCA, for both image and text data [32]. Furthermore, using

random projection, we can extend the search algorithm to support exact NN search

in L1 norm, which is found to be effective for multimedia data [16]. Experiment

results on image data sets show that performance is improved as random projec-

tion is useful to filter away the data points that are far away and the remaining

candidates are processed efficiently using a linear scan. In summary, we propose

HashFile, a novel index structure for processing nearest neighbor queries efficiently

over multimedia databases. HashFile has the following desirable features:

1. It supports approximate NN search in the Euclidean space as well as exact

NN search in L1 norm.

2. It has a linear space complexity of O(2N + N/B) where N is the data size

and B is the page size.

3. Experiment results show that HashFile outperforms state-of-the-art tech-

niques for processing both types of NN queries.

The rest of the chapter is organized as follows. First, in Section 5.2, we review

91

the necessary background to provide the underlying ideas and the intuition behind

HashFile for a better understanding. The detailed algorithm for inserting, updat-

ing and deleting data objects is presented in Section 5.3. The query processing

strategies for exact NN and approximate NN are proposed in Sections 5.4 and 5.5,

respectively. In Section 5.6, we analyze the complexity of data operations and

query processing. Extensive experiments on the real image data sets are conducted

in Section 5.7 to establish the superiority of the proposed methods over current

state-of-the-art NN processing techniques. Section 5.8 concludes the chapter.

5.2 The Preliminaries

In this section, we briefly review the theoretical background on random projection

and motivate the intuition for the notion of HashFile.

5.2.1 Random Projection

Random projection is a powerful method for dimensionality reduction. It is com-

putationally efficient and sufficiently accurate. Given a d dimensional data set P

with n points and a random matrix Rd×k, the projection is computed as follows:

P ′
n×k = Pn×d × Rd×k,

which results in a k dimensional data set P ′ with n points. Random projection

can preserve the Euclidean distance in the lower dimensional space provided the

constraints specified by the Johnson-Lindenstrauss Lemma [62] hold.

Lemma 5.1 (Johnson-Lindenstrauss Lemma). Given ǫ > 0 and an integer n, let

k be a positive integer such that k ≥ k0 = O(ǫ−2logn). For every set P of n points

92

in Rd, there exists f : Rd → R
k such that for all u, v ∈ P , we have

(1− ǫ) ‖ u− v ‖2≤‖ f(u)− f(v) ‖2≤ (1 + ǫ) ‖ u− v ‖2

The choice of random matrix is a key step and it is often Gaussian distributed

with mean 0 and variance 1 to solve the ǫ-approximate nearest neighbor prob-

lem [69, 72, 60, 83, 105]. In [15], Achlioptas showed that the computational ef-

ficiency can be further improved by replacing Gaussian distribution with a much

simpler random distribution:

Lemma 5.2. Given ǫ, β > 0, let k0 =
4+2β

ǫ2/2−ǫ3/3
log n. For integer k ≥ k0, let R be

a d× k random matrix where the elements are independent random variables from

either one of the following probability distributions:

rij =

+1 with probability 1/2

−1 with probability 1/2

or

rij =
√
3

+1 with probability 1/6

0 with probability 2/3

−1 with probability 1/6

With probability at least 1− n−β, for all u, v ∈ P ,

(1− ǫ) ‖ u− v ‖2≤‖ f(u)− f(v) ‖2≤ (1 + ǫ) ‖ u− v ‖2

In practice, we can select either of the two projection functions for dimension-

93

ality reduction. In our implementation, we pick rij randomly from {−1, 1}.

5.2.2 Distance Constraint for Exact NN Query Using L1

Suppose H is a hash function derived from any row of Rd×k such that it hashes an

object o with d dimensions into one dimensional value:

H(o) = ⌊
d
∑

i=1

hi · oi⌋

Since each element hi in H is from {−1, 1}, we can easily achieve a lower bound

for the exact L1 distance.

Lemma 5.3. Given two d dimensional data points x and y and a hash function

H : Rd → R
1 with hi ∈ {−1, 1}, we have

‖ x− y ‖L1
≥ |H(x)−H(y)| − 1

Proof.

‖ x− y ‖L1
=

d
∑

i=1

|xi − yi|

≥
d
∑

i=1

|hi(xi − yi)|

≥ |
d
∑

i=1

hi(xi − yi)|

Since for two real values a and b, |a− b| ≥ |⌊a⌋ − ⌊b⌋| − 1, we have

‖ x− y ‖L1
≥ |H(x)−H(y)| − 1

94

1 2 3 4 5 6 7 8 9

0 3 4 4 2 3 2 2 1 3 1 1

Hash : -1 0 +1 +1

x y z

x
100

yz

Figure 5.1: A random projection example

Example. Figure 5.1 shows an illustrative example. Given three 4-dimensional

data points x, y and z, a random hash function is generated to hash each point

into a 1-dimensional value. It is obvious that the distance of the hashed value is

the lower bound of their real distance. Since the elements are integers, we have

|a− b| = |⌊a⌋− ⌊b⌋| for two integers a and b. The factor “-1” can be dropped from

the RHS and therefore we get: ‖ x− y ‖L1
≥ |H(x)−H(y)|.

‖ x− y ‖L1
= 6 ≥ 6 = |H(x)−H(y)|

‖ x− z ‖L1
= 7 ≥ 7 = |H(x)−H(z)|

‖ y − z ‖L1
= 3 ≥ 1 = |H(y)−H(z)|

Inspired by this, we adopt random projection to partition the large volume of

high dimensional data points into buckets in 1-dimensional space. Each bucket is

associated with a hash value and occupies one disk page. The pages are stored

95

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 9700 9800 9900 10000 10100 10200 10300

F
re

qu
en

cy

Hash Value

δ
q1

δ δ
q2

δ

Figure 5.2: Hash value frequency of a color histogram dataset

sequentially in increasing order of hash value. Given a query point q, suppose it is

hashed into bucket hq. We denote δ as the distance to the nearest neighbor ever

found. According to Lemma 5.3, only the pages with hash value in [hq − δ, hq + δ]

need to be accessed. The other data points outside the range can be safely pruned.

Figure 5.2 illustrates an example of frequency distribution of hash value derived

from a color histogram dataset with 200, 000 points corresponding to 200K images,

which looks similar to a normal distribution. Most of the data points are hashed

into the buckets around the mean hash value µ. For buckets far away from µ, the

number of points inside the bucket drops dramatically. Therefore, if hq is lucky to

be far from µ, e.g., q2 in the figure, the search space only includes a set of buckets

with relatively few points inside the buckets. Since the pages with hash value in

[hq − δ, hq + δ] are stored sequentially, we can use linear scan to process the data

without resorting to random I/O accesses. However, if hq = q1 as shown in the

figure, we need to access the majority of the data points to answer exact NN query.

To solve this problem, we need to further partition the dense buckets. A new

96

hash function is created for each dense bucket to further partition the data points

inside. We expect that some amount of data far away from q can still be pruned

away via the re-hashing. However, as each bucket is associated with only a value of

H(·), the bucket size is relatively small. As shown in Figure 5.2, even the densest

bucket contains less than 1, 000 data points. The pruning power of re-hashing in

such a small partition is very limited. Each time we access the new partition, only

very few points can be pruned. This results in high I/O cost to perform sequential

scan on these small files. Therefore, we adopt the popular hash function in LSH to

increase the number of points hashed to each bucket:

H(o) = ⌊~a · ~o+ b

W
⌋

In our case, ai is selected the same with rij. bi is not required and simply set to

0. W is the hash window size. The original hash space is split into intervals with

lengthW and the data points hashed to the same interval will be stored in the same

bucket. Obviously, the larger W is, the more data points will be hashed to the same

bucket. Figure 5.3 shows the new frequency distribution in the larger buckets. W

is set to 450 and there are now only 15 partitions in the hash space. The densest

bucket contains around 35, 000 data points. Given a fixed page size, all the buckets

whose size exceeds the page size will be re-partitioned to gain additional pruning

power. When q is located in the dense area, we do not need to access all the data

points in the nearby buckets as in Figure 5.2. Instead, points far away from q can

still be pruned to save the CPU cost. Finally, we prove that we can still achieve a

lower bound of distance constraint using the new hash function.

Lemma 5.4. Given two d dimensional data points x and y and a hash function

97

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 2 4 6 8 10 12 14

F
re

qu
en

cy

Page Size

Figure 5.3: New frequency distribution of window based hashing

Hw(o) = ⌊hi·oi
W

⌋, we have

‖ x− y ‖L1
≥ W (|Hw(x)−Hw(y)| − 1)

Proof.

‖ x− y ‖L1
≥ |

d
∑

i=1

hi(xi − yi)|

= W |
d
∑

i=1

hixi

W
−

d
∑

i=1

hiyi
W

|

≥ W (|Hw(x)−Hw(y)| − 1)

In the extreme case, when W is set to +∞, HashFile degrades to linear scan

without any pruning power. In our experiment setup, we will study how the per-

98

formance varies with this parameter.

5.3 HashFile Index Structure

In the section, we first present the overall design of the HashFile index structure

then describe the algorithms for data insertion, update and deletion in HashFile.

The notations used in the presentation are summarized in Table 5.1.

Table 5.1: Notation table

d the data dimension
o an object with d dimensions
W the hash window size

Hw Hw(o) = ⌊
∑d

i=1 hi·oi
W

⌋
[li, hi] the hash interval of a page
B the page size to host B objects
δ the best NN distance ever found
µ the storage utilization rate
κ the tree height of HashFile

5.3.1 HashFile Overview

We build HashFile in a top-down manner based on the distribution of the data

set. In the beginning, we randomly generate a hash function in the root node and

create a disk file to store the data. Since we are unable to predict the hash range,

we cannot allocate a collection of fixed-size pages in advance. Moreover, such a

static allocation strategy wastes a lot of storage resource because the buckets far

from the mean hash value usually contain a small number of data points, resulting

in a low storage utilization. Hence, we propose a dynamic allocation mechanism

which guarantees that the page utilization is at least 50%.

99

h3

N15N12 N14

N21 N22 N23 N24 N25

N11

N1

N13

h4 h5 h6 h7 h8h1 h2l1 l2 l3 l4 l5 l6 l7 l8

Figure 5.4: The structure of HashFile and HashNode

Initially, there is only one page allocated in the disk file with a hash interval

(−∞,∞). The size of the page is fixed as B, indicating that it can accommodate B

data points. The first B objects can be successfully inserted into the page. When

the (B + 1)-th object arrives, the page is full and we select a hash value hs and

split the page into two new pages. Now, the object can be inserted into the new

page based on its hash value. As new objects are inserted continuously, more and

more split operations occur and the hash intervals of the page become smaller and

smaller. Finally, an object may be hashed to a full bucket in which all the data

points inside this page are associated with the same hash value and can not be

split any more using the node’s hash function. To insert this new object, we need

to create a child node with a new random projection function. The data points in

that page are extracted and re-hashed into the child node’s data file. At this time,

we have vacant space in the child node to accommodate the new object.

Figure 5.4 illustrates an example of HashFile with the tree structure and the

logical view of one internal tree node. The tree is built by continuous insertion of

100

data points. When a bucket in the parent node can not be split any more, child

nodes are created to further partition the dense bucket. Therefore, each internal

node contains a list of child nodes and pages as shown in the figure. Each cell

represents one page with a hash interval [li, hi]. The pages are stored in increasing

order of the hash value, i.e., li ≤ hi ≤ li+1 and
⋃

[li, hi] = (−∞,∞). The pages

with circles inside are buckets with only one hash value and the data inside have

been extracted and re-hashed into the child node. In this example, we have l3 = h3,

l4 = h4 and l5 = h5. Therefore, node N13 has three child nodes N22, N23 and N24.

Note that in the physical file, these three buckets do not occupy any page as their

content has been extracted and stored in the child nodes’ disk files. In this way,

we ensure that the remaining disk pages are still sequentially stored.

5.3.2 Data Insertion

Algorithm 7 InsertData(o) : Insert an object into HashFile

Input: Data object o
1. pi = FindPage(o)
2. if pi is not full then
3. append o in pi
4. else
5. if hi > li then
6. select a hash value hs

7. split the pages into two pages pi1 and pi2 with intervals [li, hs] and [h′
s, hi]

respectively
8. leave data points of pi1 in the page pi
9. create a new page for pi2 and insert pi2 next to pi1
10. if ho ≤ hs then
11. append o in pi1
12. else
13. append o in pi2
14. else
15. create a new hash function and a new disk file as the child node
16. extract pi and hash the points to the new file
17. move pj to pj−1 for j > i in the parent node
18. InsertData(o)

101

Algorithm 8 FindPage(o) : Find the disk page o is hashed into

Input: Data object o
Output: The disk page that o is hashed into
1. init node as the root node
2. while 1 do
3. ho = node.hash(o)
4. if ho is the hash value of a child node child then
5. node = child
6. else
7. find disk page pi so that ho ∈ [li, hi]
8. return page pi

Given a data object o to be inserted into HashFile, we need to find the disk

page in the tree node where o is hashed into. Since the hash value range of each

tree node is (−∞,+∞), we can ensure that the hash value of o must be located

either in a disk page or in one of the child nodes. Thus, we start from the root node

and compare the hash value of the intervals of each page. If we find a page pi with

interval [li, hi] such that ho ∈ [li, hi], o will be inserted into this page. Otherwise, o

must be hashed into one of the child nodes. We compare the hash value with the

list of child nodes until we find a match. The child node is visited in a similar way

to the root node. Finally, we must be able to find a disk page pi in the tree node

to host the object o.

If the found page pi has vacant space, we directly append o into the page.

Otherwise, we need to check the hash range of pi to determine whether we split the

page or create a new child node. If objects inside pi are associated with multiple

hash values, we can find the median hash value hs so that we can split pi into two

new pages pi1 and pi2 . hs is selected to make sure the page is split into two even

parts to guarantee the storage utilization is no less than 50%. The hash intervals of

the pi1 and pi2 become [li, hs] and [h′
s, hi] respectively. Note that the objects hashed

to hs could appear in both new pages. In this case, hs = h′
s. Otherwise, h′

s = hs+1.

102

We leave the objects hashed into [li, hs] in the original page pi and create a new

physical page for pi2. To ensure that the hash intervals are in increasing order for

sequential scan, we insert the page pi2 right next to pi in the file.

If pi is full and all the objects inside pi are hashed to the same value, we can

not split the page any more. Thus, we create a new hash function as the child

node for further partition of pi. All the contents in pi are extracted and hashed

into the child node. pi is deleted in the parent node and we move the block of

pages {pj|j > i} ahead to fill the gap. The object o can now be inserted into the

child node with the new hash function. The detailed algorithm of data insertion is

shown in Algorithm 7.

5.3.3 Data Deletion

The delete operation is simpler than the insert operation. Given an object o to

delete, we first find the disk page where o is located in using Algorithm 8. Then, we

sequentially scan the data inside it and delete the object. A simpler implementation

is to maintain a bitmap with B bits for each page. Each bit indicates whether the

corresponding slot is free or in use. To delete an object, we only need to set the

status flag as free. In this case, to insert an object, we only need to find any free

slot for the data.

If the page becomes empty after the delete operation, we do not delete it. The

reason is that the overhead caused by the empty page in the query processing stage

is negligible. The pages are loaded into the memory in blocks and do not require

additional CPU cost when scanning the data. Moreover, in the Web 2.0 appli-

cations, insert operations are much more frequent than delete operations. There

would be new objects inserted into the page in the future. Thus, we can save the

overhead of removing the page cost by simply leaving the page there and reusing

103

it later when new objects are inserted.

5.3.4 Data Update

Given an object o to update, since its hash value could be updated as well, we can

not simply update it in the data file. Instead, we treat an update operation as a

deletion followed by an insertion.

5.4 Exact NN Query Processing

In this section, we present the exact NN query processing algorithm using the

proposed HashFile. We adopt the lower bound distance constraint in Lemma 5.4

to prune the search space. Since we have organized the disk pages in the file in

increasing order of the hash value, the candidates can be retrieved efficiently.

Algorithm 9 ExactNN : Exact NN Search in HashFile

Input: Query object q
Output: The distance δ from q to its nearest neighbor
1. init δ
2. δ = ExactNNInNode (q, root, δ)
3. return δ

Algorithm 9 and Algorithm 10 show how exact NN search is performed in

HashFile. Given a query point q, we start from the root node and recursively

search the child nodes in the depth-first order. Suppose q is hashed to hq in the

current tree node, the candidate hash space is [hq − δ
W

− 1, hq +
δ
W

+ 1]. We check

the list of child nodes whether their hash values are located in this range. The

candidate child nodes are put in the heap in increasing order of their distance to hq

so that the most promising child node can be accessed first in the best first search

manner. Meanwhile, we check the the disk pages to find the start offset and end

offset whose hash intervals intersect with our candidate search space. The block of

104

pages are loaded into memory using random access and scanned sequentially. If a

better result is found, we update δ accordingly. Finally, the algorithm terminates

until all the candidate nodes are explored.

Algorithm 10 ExactNNInNode : Exact NN Search in the HashNode

Input: Query object q, a tree node node and δ
Output: The new δ
1. hq = node.hash(q)
2. for each child node child do
3. cdist = W (|child.hashvalue− hq| − 1)
4. if cdist < δ then
5. add child to the heap ordered by cdist
6. for each node candiddate in the heap do
7. δ = ExactNNInNode (q, candidate, δ)
8. for each disk page pi in increasing order do
9. find the list of pages from pstart to pend so that their intervals intersect with

[hq − δ
W

− 1, hq +
δ
W

+ 1]
10. load the block of pages into memory
11. for each object o in the block do
12. dist =‖ o− q ‖L1

13. if dist < δ then
14. δ = dist
15. return δ

5.5 Approximate NN Query Processing

In LSH, each hash table is associated with m hash functions. Intuitively, we can

consider all the buckets are organized in a height-balanced tree in which the path

length from the root to the leaf nodes is always m. When m increases, the bucket

size becomes smaller and it is more likely for the objects close to each other to

be hashed into neighboring buckets and missed by the search algorithm. Thus,

expanding the search space by inspecting neighboring buckets can significantly

improve the result quality [83, 71].

Inspired by this, we propose a flexible and effective method to process approx-

105

imate NN query. Users can specify a parameter λ to determine the search space.

If q is hashed to hq, we only explore the neighboring buckets with hash value in-

terval intersecting with [hq − λ, hq + λ]. Note that λ specifies the query range in

the hash space instead of the number of neighboring buckets. Figure 11 shows an

example in which q is hashed to B5 with hash value 9. When λ = 1, only three

buckets {B4, B5, B6} are in the search space. All the points in B6 are scanned

sequentially. Since B4 and B5 correspond to child nodes, they will be processed

in a similar way to their parent node. When λ = 3, the search space expands to

{B2, B3, B4, B5, B6, B7}. Since buckets {B2, B6, B7} are stored sequentially in the

data file, we can load them into memory for linear scan.

Algorithm 11 and 12 illustrate how to answer an approximate NN query. The

search process starts from the root node in a top-down manner and recursively

explore the neighboring buckets within the search range. These candidate buckets

are retrieved using sequential scan. When λ is 0, we only examine the points

located within the same bucket with the query object. This is the same with the

basic LSH.

Algorithm 11 ApproximateNN : Approximate NN Search in HashFile

Input: Query object q and query range λ
Output: The distance δ from q to its approximate nearest neighbor
1. init δ
2. δ = ApproximateNNInNode (q, root, δ, λ)
3. return δ

5.6 Complexity and Cost Analysis

In this section, we analyze the storage utilization as well as the query time cost

in answering both exact and approximate NN queries. Since the split operation

partitions one page into two even parts, we have the first lemma on the storage

106

Algorithm 12 ApproximateNNInNode : Approximate NN Search in the
HashNode
Input: Query object q, a tree node node, distance δ, and query range λ
Output: A new δ
1. hq = node.hash(q)
2. for each child node child do
3. wdist = |child.hashvalue− hq|
4. if wdist < λ then
5. add child to the heap ordered by wdist
6. for each disk page pi in increasing order do
7. find the list of pages from pstart to pend so that their intervals intersect with

[hq − λ, hq + λ]
8. load the block of pages into memory
9. for each object o in the block do
10. dist =‖ o− q ‖L2

11. if dist < δ then
12. δ = dist
13. return δ

utilization:

Lemma 5.5. Given a data set P with N points, where N ≫ B, after inserting

all the data points into HashFile, we have the storage utilization rate for each page

µ ≥ 50%.

Proof. We prove that µ ≥ 50% is the loop invariant during the batch insertion:

Initialization : After the first B
2
data points are inserted, there is only one

Exact NN

Approx NN (λ = 3)

Approx NN (λ = 1)

δ δ

λ λ

λ λ

B3 B4 B5 B6 B7 B8B1 B2
∞ ∞2 3 6 77 8 8 9 9 10 1110 17 18 +−

hq

Figure 5.5: Approximate search in the tree node

107

page and µ = 50%.

Maintenance : When a new data is inserted, there are three cases.

1. The page has free space to host the data. The number of points in that page

will increase by 1. Thus, µ′ > µ ≥ 50%.

2. If the page is full and a split occurs, since the objects in the page can be

evenly partitioned, we have µ ≥ 50% for the two new generated pages1.

3. If the page is full and can not be split, a new child node is created and this

page is moved to the child node’s data file. Similar with case 2), when the new

object is inserted to this page, a split occurs at the child node and µ ≥ 50%

still holds.

Termination : When the insertion terminates, µ ≥ 50% still holds.

5.6.1 Storage Cost

Since the storage utilization rate for each page is no less than 50%, we only need

at most 2N space to store the data points. Also, there would be at most N/B tree

nodes, the storage cost for HashFile is O(2N +N/B).

5.6.2 Exact NN Query

In the worst case, the search space includes the entire HashFile when no points

can be pruned. Since N ≫ B, each node contains at least two disk pages using

the even split approach, there are at most N/B tree nodes in HashFile. The exact

query processing algorithm visits all the data points and the tree nodes. Hence,

the cost is O(N(1 + 1
B
)).

1Counting in the new data to be inserted, we actually split B + 1 objects into two pages and
B+1

2
≥ ⌈B

2
⌉

108

5.6.3 Approximate NN Query

In the approximate NN query, we usually select a small W so that the densest

bucket contains a small fraction of the data size, say ǫN . Since we only visit at

most 2λ+ 1 buckets in the root node, the total number of data accessed would be

O((2λ+1)ǫN), spread in O(2(2λ+1)ǫN
B

) buckets. As each node contains at least two

buckets, we need to access O((2λ+1)ǫN
B

) node. The cost of approximate NN query

becomes O((1 + 1
B
)(2λ+ 1)ǫN).

5.7 Experiments

In this section, we study the performance of HashFile and compare it with state-

of-the-art approaches using real image data sets. Both exact and approximate

NN query processing algorithms are evaluated. All the experiments are conducted

on a server with Quad-Core AMD Opteron (tm) Processor 8356, 128GB memory,

running Centos 5.4.

5.7.1 Data Set and Query

We use NUS-WIDE [39] as the image data set, which contains 269, 648 web

images from Flickr. Two types of image features widely used in the image retrieval

applications are extracted:

1. Color Histogram. In image processing and photography, a color histogram

summarizes the distribution of colors in an image. The color space is quan-

tized into a set of bins and the value of each bin represents the number of

projected pixels by color. In practice, LAB color space [104] is normally

selected as the candidate because its space is linear and suitable for quantiza-

109

tion. In our experiment, we extract 64-dimensional color histograms in LAB

space from the image data set.

2. SIFT. The SIFT [81] descriptor has been widely used in image retrieval and

object recognition due to its invariance with respect to translation, scaling,

rotation and small distortions. Each feature is a 128-dimension vector ex-

tracted from 4 ∗ 4 subregions around the key point and each subregion is

approximated by an 8-bin histogram of the image gradients.

We split the color histogram data set into two parts D1 and Q1 without inter-

section. 100 color histograms were randomly selected as the query. The leftover

data are used as the underlying database. Similarly, we extract 10 million SIFT

features from the Flcikr photos for indexing and another 200 for query.

5.7.2 Performance Measurement

The goal of the experiments is to show that the performance of our index is better

than state-of-the-art query processing methods in answering exact and approximate

NN queries in the high dimensional vector space. Before we present the experiment

results, we first address the performance measurement used in our experiments to

judge the superiority of an index.

Due to the curse of dimensionality, the pruning power degrades in the high

dimensional space, resulting in a large candidate set for the NN result. We need

to load these candidates into memory and calculate their distance to the query

object. Both disk I/O cost and CPU computation time play an important role in

the query processing stage. Since HashFile takes advantage of sequential scan, it

may be unfair to measure the I/O cost simply by the number of page access or

disk access. To make a fair competition, we use average response time (ART) to

110

measure the performance of an index in answering an exact NN query.

ART = (1/NQ)

NQ
∑

i=1

(Tf − Ti)

where Ti is the time at which the query was issued, Tf is the time of query com-

pletion and NQ is the total number of times exact NN query was issued. The ART

is equivalent to the elapsed time including both I/O and CPU cost. Besides the

ART, we also report the selectivity of different indexes in the query processing. If

we assume the time cost of calculating the distance between a candidate to the

query object is fixed as t, the CPU cost can be measured by the selectivity.

Ccpu = N ∗ s ∗ t

, where N is the data size and s is the average query selectivity.

In the approximate NN query, the quality of the result is usually represented

by the distance ratio between the approximate NN and the exact NN. For top-k

approximate NN query, we can adopt the same metric as in [105]:

Ri(q) =
‖oi, q‖
‖o∗i , q‖

, 1 ≤ i ≤ k

R(q) =

∑k
i=1Ri

k

where oi is i-th approximate neighbor and o∗i is the exact neighbor. Obviously,

the smaller the value of R(q), the better is the quality of results retrieved via

approximate NN query. If R(q) equals to 1, the query results are exact. However,

the distance recall is not enough to measure the performance of an index as there is

a trade-off between the access cost and the result quality. If more data are accessed

in the buckets, a smaller R(q) can be retrieved. Hence, we need to consider both

111

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

30 50 100 200 300

A
R

T
(s

ec
on

ds
)

W

Figure 5.6: Tune parameter W

factors in the performance measurement. Since LSB-tree uses random access and

our index takes advantage of sequential scan, we still use ART to measure the

access cost. We plot the curve of R(q) as the y axis with respect to the ART as the

x axis. The curve drops down as the ART increases, meaning that R(q) is getting

close to 1. We use the area under the curve as the measurement. If an index can

retrieve an approximate result closer to the exact neighbors in less running time,

we consider it to be superior.

5.7.3 Parameter Tuning

In our first experiment, we study how the performance varies with the only pa-

rameter W . The page size B is fixed as 100. We randomly select a subset with 1

million SIFT descriptors from D2 as the data set and test the performance of the

exact NN search algorithm.

The result in Figure 5.6 shows that the performance degrades when W is set

too large or too small. If W is chosen to be very large, a lot of data points will be

hashed into the same bucket. It becomes easy for a bucket to be overloaded and

generate new child nodes. Therefore, the tree becomes higher and more random

112

accesses are needed to retrieve the tree nodes. Also, there are fewer disk pages in

each node’s file. The advantage of sequential scan is offset in this case. On the

other hand, if W is set to be very small, the strategy of further partitioning the

dense bucket becomes useless. The number of points in the buckets is small as well

and the re-hashing does not take much effect.

5.7.4 Frequent Insertion

HashFile needs to maintain the sequential order of disk pages based on the hash

value. When a split operation occurs in a full page pi, we need to move the pages

{pj|j > i} backwards to make room for the new page. Similarly, when pi contains

objects with the same hash value and can not be split using the node’s hash func-

tion, we need to delete pi from the file and move forward the pages {pj|j > i} that

are behind to fill the gap. We consider the page movement as a sequence of two

disk operations: the block of pages {pj|j > i} is first read into the memory and

then written to the target location in the disk file. The I/O cost is determined by

the size of the block to be moved.

Figure 5.7 shows an example of how the number of disk pages in the root varies

when data points are continuously inserted. In this example, we use the color

histogram data set and set the page size to 100. From this curve, we can tell that

the number of pages in the data file is always in a small scale. The first split occurs

when the 101-st point arrived. After that, the pages in the root are split frequently

and the number of pages in the file increases dramatically. As more data points are

inserted, the buckets near the mean value can not be split anymore. These buckets

are extracted from the file and re-hashed into the child nodes. Thus, the number

of pages starts to decrease. Finally, this number becomes relatively stable, varying

between 3 to 6, because the buckets near the mean hash value have been deleted

113

 0

 2

 4

 6

 8

 10

 12

 14

1 10 100 1K 10K 100K

P
ag

e
N

um

Data Inserted

Figure 5.7: The number of pages in the root node

and new objects are more likely to be inserted into the child nodes. Therefore,

the file size does not grow too large and cause too much I/O overhead in the page

movement.

5.7.5 Exact NN Query

In this experiment, we compare HashFile to linear scan, VA-file, and iDistance.

The parameter setting for each type of index is shown in Table 5.2. We tune the

bit number for each dimension in the VA-file in the range of [4, 6] and select the

best one to build the index. The number of reference points in iDistance is set

to 2d. The window size of W in HashFile is also set differently according to the

data set. The exact NN query is executed on both color histogram and the SIFT

descriptor. We gradually increase the data set in D1 from 180, 000 to 260, 000 and

in D2 from 2 million to 10 million.

Table 5.3 shows the disk storage used for each of the three types of index. VA-

file takes up the least storage cost. Besides the real data points, it only maintains

the bitmap summary which can be stored efficiently. iDistance needs to build an

additional B+-tree and store the real data in the leaf entries. Since the page can not

114

Table 5.2: Parameter Setting

VA-File iDistance HashFile
D1 bit=5 ref=128 W=20
D2 bit=4 ref=256 W=100

be fully utilized, it takes much more storage cost than VA-file. HashFile consumes

slightly larger storage than iDistance. But it is still under the bound O(2N+N/B).

Table 5.3: Index storage cost

Color Histogram(MB)
Data Size 180K 200K 220K 240K 260K
VA-file 49.4 54.9 60.4 65.9 71.4

iDistance 72 80 87 95 104
HashFile 74 82 89 96 104

SIFT Descriptor(GB)
Data Size 2M 4M 6M 8M 10M
VA-file 1.125 2.25 3.375 4.5 5.625

iDistance 1.6 3.1 4.6 6.1 7.6
HashFile 1.8 3.5 5.3 7.0 9.2

The pruning power of the three types of index in answering exact top-50 NN

queries is reported in Table 5.4. It counts the proportion of the real data points

accessed in the query processing stage. VA-file has the best selectivity because

the data space is split into exponential number of small cells and the real data

points are tightly approximated by the cells. After comparing the query point to

the bitmap file, only a very small number of real data need to be accessed. The

pruning power of iDistance is mainly determined by the selection of the reference

points. When we use the cluster center to partition the space into Voronoi cells,

iDistance demonstrates a better pruning power than HashFile. The pruning of

iDistance is based on real distance while HashFile is based on the lower bound

distance constraint in the hash space. All the data points in the same page are

115

sequentially scanned without any pruning. As d increases from 64 to 128, we can

see that the pruning power of VA-file becomes even better. However, iDistance and

HashFile need to access the majority of the data set.

Table 5.4: Top-50 NN query selectivity

Color Histogram
Data Size 180K 200K 220K 240K 260K
VA-file 0.00281 0.00275 0.00269 0.00264 0.00260

iDistance 0.217 0.205 0.2 0.193 0.182
HashFile 0.301 0.291 0.285 0.278 0.268

SIFT Descriptor
Data Size 2M 4M 6M 8M 10M
VA-file 0.00034 0.00024 0.00021 0.00019 0.00018

iDistance 0.841 0.769 0.696 0.645 0.599
HashFile 0.918 0.911 0.902 0.889 0.867

The average running time to answer the queries is shown in Figure 5.8. Since

the color histogram data set is skewed, iDistance shows good pruning power and

its performance is better than linear scan. But when it comes to the SIFT data set,

which is more uniformly distributed, iDistance needs to access the majority of the

pages and performs worst. Such a large amount of random access makes the index

I/O bound. VA-File outperforms linear scan in both two data sets. It has extremely

low selectivity in the query processing and the operations to calculate the minimum

and maximum bound distance from the query point to the cells are optimized in the

implementation to greatly save the CPU cost. HashFile adopts random projection

to gain the pruning power and takes advantage of sequential scan to reduce the

number of random access. It achieves significant superiority over the other index

structures in the color histogram data set, which is skewed to black and white

colors. In the SIFT data set, the data is more uniformly distributed and HashFile

needs to access a large population of the data. Comparing Figure 5.8(b) with

116

Figure 5.8(b), we can see that the performance of high dimensional index start to

degrade to linear scan as the dimensionality increases. This makes approximate NN

search an appealing method to handle similarity search in a large scale multimedia

database.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 180 200 220 240 260

A
R

T
(s

ec
on

ds
)

Data Size(K)

HashFile
Linear Scan

iDistance
VA-file

(a) Color Histogram

 0

 5

 10

 15

 20

 2 4 6 8 10

A
R

T
(s

ec
on

ds
)

Data Size(M)

HashFile
Linear Scan

iDistance
VA-file

(b) SIFT

Figure 5.8: Performance of the exact top-50 NN search

5.7.6 Approximate NN Query

In this experiment, we test the performance of HashFile in answering the approxi-

mate NN query. We use the LSB trees [105] as the comparison method. In order

to plot the curve of R(q) with respect to the access cost for the LSB trees, we do

not terminate the search algorithm based on the two conditions proposed in [105].

Instead, we set a parameter I as the number of iteration to execute. We gradually

increase I so that more and more leaf entries will be accessed. With the increasing

access cost, the algorithm returns the nearest neighbors with smaller R(q). In this

way, we can plot how the quality of the result varies with the running time. As

to HashFile, we set a small window and gradually increase the parameter λ. Each

time λ is increased, we can access more disk pages to find a better nearest neighbor.

The experiment is conducted on D1 with 260, 000 color histograms and D2 with

two million descriptors.

117

Table 5.5: Storage cost of HashFile and LSB forest

Color Histogram SIFT Descriptor
HashFile 110MB 1.6GB

LSB(1 tree) 107MB 1.6GB
LSB(5 trees) 539MB 8GB
LSB(10 trees) 1094MB 16GB

We computed the overall disk storage costs for the LSB forest with varying

number of trees. Table 5.5 depicts the storage cost for different variants. The

size of HashFile is basically the same with that of one LSB tree. The size of the

LSB-forest grows linearly with the number of trees. In particular, when 10 trees

are used, the storage cost of LSB is almost 10 times that of HashFile.

Figure 5.9 shows the tradeoff between R(q) and ART on the top-20 nearest

neighbors in D1 and D2 respectively. As more data are accessed, R(q) declines to

be near 1, indicating that better results are found. We can clearly tell from the

figure that HashFile has significant superiority than LSB forests. Even though LSB

forests consume much more storage cost than HashFile, when the number of trees

increases to 10, its performance is still dominated by HashFile. Given a point in

the curve of 10 LSB trees, we can always find another point in HashFile curve so

that the query is processed with less running time but with better R(Q). This

validates the superiority of linear scan to random access.

Finally, we compare the search quality of HashFile with LSH. In HashFile, only

the dense buckets are further partitioned and the data points are associated with

hash values of variable length. In contrast, the length is fixed as m when LSH

is used. We use multi-probe LSH 2 as the comparison method because it is also

adhoc and without theoretical guarantee. In this experiment, we set m = κ, i.e.,

2http://lshkit.sourceforge.net/

118

 1
 1.02
 1.04
 1.06
 1.08
 1.1

 1.12
 1.14
 1.16
 1.18
 1.2

 0 0.02 0.04 0.06 0.08 0.1

D
is

t R
at

io

ART(seconds)

HashFile
LSB(T=1)
LSB(T=5)

LSB(T=10)

(a) Color Histogram

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 0 0.2 0.4 0.6 0.8 1

D
is

t R
at

io

ART(seconds)

HashFile
LSB(T=1)
LSB(T=5)

LSB(T=10)

(b) SIFT

Figure 5.9: Approximate NN query results of LSB-tree and HashFile

the number of hash functions m is equal to the tree height of HashFile. We also

tuned the parameter W in these two indexes to generate roughly the same number

of buckets. Since multi-probe LSH is an in-memory index, the search quality is

measured by the distance ratio with respect to the number of data accessed. We

gradually increase the number of probe in multi-proble LSH and λ in HashFile to

expand the search space. The experiment results on the color histogram and SIFT

data sets are shown in Figure 5.10. Since the distribution of bucket size in LSH

is much more skewed than HashFile, many false positives still exist in the dense

buckets. Accessing these false positives will reduce the search quality. HashFile

has more balanced bucket size and demonstrates better search quality.

 1
 1.02
 1.04
 1.06
 1.08
 1.1

 1.12
 1.14
 1.16
 1.18
 1.2

 0 5000 10000 15000 20000

D
is

t R
at

io

Number of data accessed

HashFile
Multi-probe LSH

(a) Color Histogram

 1
 1.02
 1.04
 1.06
 1.08
 1.1

 1.12
 1.14
 1.16
 1.18
 1.2

50K 100K 150K 200K 250K

D
is

t R
at

io

Number of data accessed

HashFile
Multi-probe LSH

(b) SIFT

Figure 5.10: Approximate NN query results of Multi-probe LSH and HashFile

119

5.8 Summary

In this chapter, we proposed a novel index structure, HashFile, to handle nearest

neighbor queries in the high dimensional vector space which are needed to support

object retrieval in multimedia databases. The index can support approximate NN

search in the Euclidean space and exact NN search in L1 norm. Users can select

the query strategy based on their applications. HashFile is simple in structure

and therefore is easy to be implemented into the real system and applications. It

provides better efficiency in processing both two types of NN queries. Experiments

were conducted on real data sets to establish the superiority of Hashfile over other

state-of-the-art index structures.

CHAPTER 6

LANGG : A TRAVEL MASHUP

SYSTEM FOR LOCATION-BASED

SERVICES

In this chapter, we introduce the framework and design issues of our travel mashup

system which provides location-based services. We also demonstrate the system

to show how each locating application is implemented. We target our system at

travel market in Singapore and crawl relevant travel data mainly from Foursquare1,

Flickr2 and TripAdvisor3 to build a spatial database. User feedback shows that our

system provides satisfactory search results.

1https://foursquare.com/
2http://www.flickr.com/
3http://www.tripadvisor.com/

120

121

Crawler

Crawler

Crawler

geotags

inverted index

spatial index

User Interface

HashFile

Figure 6.1: The framework of location detecting in Web 2.0 applications

6.1 System Framework

The emergence of Web 2.0 has resulted in the concept of mashup where data objects

from multiple external sources are combined to create a new service. In other words,

mashup is a hybrid web application built on top of resources from different channels.

In this section, we describe a new type of mapping mashup that integrates data

sources from various Web 2.0 applications to support travel resource locating. The

framework exhibits the following features:

• A wide range of data sources from different Web 2.0 applications are com-

bined.

• All the resources are represented in a uniform data model to facilitate the

indexing and searching process.

• A simple, map-based user interface is designed to provide users with satisfac-

tory experience in searching and browsing the geographical resources.

Figure 6.1 shows the map mashup framework. It consists of three components:

1) the index engine to crawl, integrate and index source data. 2) query engine to

find the location of the resources. 3) friendly interface to improve user experience.

122

Index Engine

The index engine aims at supporting efficient tag matching and image locating

on top of the combined data resources derived from other applications, such as

Wikipedia, Flickr, Picasa Web Albums, and Youtube. In Wikipedia, most of the

articles with geographical context have been geo-located. For instance, the page

“Forbidden City” is associated with coordinates 39◦54′53′′N and 116◦23′26′′E. This

location information can be parsed as the spatial attribute of the article. In online

photo sharing applications like Flickr and Google Web Picasa, APIs have been pub-

lished to access the public albums, photos, tags as well as their locations. Similarly,

when users share their videos in Youtube or other online video sharing websites,

they may mark on the map the location where the video was shot. Hence, we are

able to retrieve mapped resources of different types to build a spatial database.

In our implementation, we crawl travel services from Foursquare, geo-tags from

Flickr and photos of sight attractions from TripAdvisor. After the retrieval step,

we need to combine the data sources. We can use the uniform resource mapped re-

source model to seamlessly integrate the articles, photos and videos. It can provide

a transparent access layer and benefit the indexing and searching process. SIFT

features are also extracted from the photos and indexed using HashFile.

The Query Engine and User Interface

Based on our uniform resource model, the query interface allows users to submit

query in different formats. Our system supports three types of input, including

desired travel services, tags and travel photos. Local search engines can benefit

greatly from such queries as these can help them to provide better customized

service.

The search engine is designed to be simple and friendly. The whole interface is

123

Figure 6.2: System portal of LANGG

map-based. Users can freely explore geo-resources in the area they are interested

in. Different search portals are provided for different types of input. All the related

resources will be displayed directly on the map for further refinement.

6.2 Demonstration

The main portal of our system is shown in Figure 6.2. The logo is Explore Singapore

as our system is targeted at Singapore travel market. There are there buttons

indicating the three types of locating services that our system supports. Users can

select the locating function they are interested in by clicking the corresponding

button. In the following, we will explicitly explain the implementation of each

locating application.

6.2.1 Search Closest Travel Services

We crawl 45 popular local services from Foursquare in Singapore to benefit trav-

ellers. The services are divided into five categories, including Restaurant, Shop,

Night Club, Entertainment and MISC. Since restaurant is a very popular travel

service, we cover various types of restaurant in our database. As we can see from

124

Figure 6.3: Interface of locating closest travel services

Figure 6.3, our system supports search for restaurants from all over the world in-

cluding Asian, Chinese, Japanese, Indian, French, American, Italian and African.

We also provide Fast Food, Coffee and Dessert for special needs. To use the locat-

ing function, users just check their desired services from the list and click “Submit”

button. The search result will be displayed on the right-hand, as shown in Figure

6.3. The closest services are displayed on Google Maps with markers indicating

their locations. Textual description of these entities are also provided under the

map block. Users can click them for more detailed information in Foursquare. To

start a new search, they can click the “Clear All” and re-check the query services.

6.2.2 Search Location Using Tags

In our system, the geo-tags are derived from Flickr images. When users upload

their photos to Flickr, some of them would also mark the shooting location of each

125

Figure 6.4: Query by “bird park”

photo on the map and annotate it with tags as description or summary. We crawl

4, 000 photos with geo-tags as our underlying database. Although the database is

not large, it can support simple queries that are relevant to some popular travel

resources in Singapore. Figure 6.4 and 6.5 show two query examples of “bird park”

and “chicken rice”. The location and related Flickr photos are displayed to show

the relevance.

6.2.3 Search Location by Image

We crawl travel photos that are associated with most popular sight attractions from

TripAdvisor. There are in total 2, 228 photos which generate around 4 million SIFT

features. We use HashFile to index these features and adopt approximate nearest

neighbor search for image similarity retrieval. In our search interface, users can

submit a query photo either from an external url or from their local file system.

When the photo is uploaded, we first extract its SIFT features. Then, for each

126

Figure 6.5: Query by ”chicken rice”

feature, we check which bucket it is located in our HashFile index. Features in

that bucket are retrieved as matching candidates. If an image has more matching

features with the query image, we consider it more similar and assign it with

higher score. We illustrate two query examples in Figure 6.6(a) and 6.7(a) about

Singapore Merlion and Singapore Zoo. The search results for these two queries,

including top-5 matching images as well as their location on the map are shown in

Figure 6.6(b) and 6.7(b) respectively. From the results, we can see that HashFile

provides satisfactory results for famous landmark recognition.

127

(a) Input image (b) Search result

Figure 6.6: Example image query of Merlion

(a) Input image (b) Search result

Figure 6.7: Example image query of Zoo

CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 Conclusion

Map mashup is a popular and convenient means to integrate and visualize various

types of web resources, including documents, photos and videos. In this thesis, we

proposed efficient spatial keyword query processing technique and built a new map

mashup system to provide users with location-based services.

First, we addressed a novel query, named mCK query, in Chapter 3 to retrieve

the closest set of objects matching m specified query keywords. We used keyword

to represent travel service and applied mCK query to find a location on the map

where a set of travel services are closest to each other. Such an application is

specially useful to save the transportation cost when a traveller only has limited

staying time in a city. Since the search space of mCK query is exponential to the

number of travel services and the size of database, an efficient solution is typically

required. We built a bR∗-tree which effectively summarizes keyword locations to

128

129

facilitate pruning. We also proposed effective a priori-based search strategies for

mCK query processing and discussed two monotone constraints with efficient im-

plementation. Our performance study on both synthetic and real data sets shows

that our proposed bR∗-tree answers mCK queries efficiently within relatively short

query response time. Furthermore, it demonstrates remarkable scalability in terms

of the number of query keywords. It significantly outperforms the existing MWSJ

approach when m is large.

Besides travel services, we also proposed efficient solutions to detecting the

geographical context of web media. If the media is associated with user-generated

tags, we developed a new detecting method to support co-location searches by tag

matching in Chapter 4. We built a labelled R∗-tree and inverted lists to index the

spatial and textual attributes of web resources in the underlying database. We

developed efficient search strategies to answer the tag matching query. To further

improve the matching precision, we proposed a new geo-tf-idf ranking mechanism

to measure the geographical relevance of query tags with respect to the detected

location. Extensive experiments using both synthetic and real life data sets confirm

the feasibility and efficiency of our proposed design in the Web 2.0 environment.

If the media is a raw travel blog or photo, content-based matching method can

be used. If the input is a textual document, there have been quite a few related

works about detecting geographical context of web documents and we could adopt

existing approaches to solve the problem. If the input is a travel photo, we used

nearest neighbor(NN) search to find the most similar image as the match result.

To efficiently support NN query, we proposed a novel index structure, HashFile, in

Chapter 5 to handle nearest neighbor queries in the high dimensional vector space.

The index can support approximate NN search in the Euclidean space and exact NN

search in L1 norm. Users can select the query strategy based on their applications.

130

HashFile is simple in structure and therefore is easy to be implemented into the

real system and applications. It provides better efficiency in processing both the

two types of NN queries. Experiments conducted on real data sets established the

superiority of HashFile over other state-of-the-art index structures.

7.2 Future work

Although our system provides efficient solutions to location detecting services, there

still exist situations that it can not handle well. The bR∗-tree in Chapter 3 inte-

grates all the keyword information inside the tree node. When there exist a large

number of keywords in the database, the node size could become very large and

the I/O access to tree nodes could turn into the bottleneck of performance. Hence,

the performance is not scalable in terms of the number of travel services. Although

we proposed a new virtual bR∗-tree in Chapter 4 which combines the advantage of

R∗-tree and inverted index and demonstrates good scalability, it incurs consider-

able update cost when the insertion frequency of new objects is high. Each time

a node in the R∗-tree is split after an insertion, the label of its descendants will

change and all the related elements in the inverted lists need to be updated as well.

Therefore, the design of a scalable and easy-to-maintain spatial index for answering

mCK query still remains an interesting area for future work.

There are also two dimensions to extend mCK query to more useful applica-

tions. The first one is to add spatial constraint to support mobile applications. For

example, users may be more interested to find closest tuples around their locations.

The other extension is to support partial mCK query. When the number of key-

words is large, the distance of the results could be too large to be meaningful. In

this case, we may need to select subset of query keywords in the query processing.

131

If web resource is associated with noisy tags or the number of query tags is too

large, it may not be meaningful to return a location matching all the query tags. In

this case, a partial tag match would be a desired solution. The place that matches

only a subset of the query tags can be returned. Hence, the design of a new spatial

index and ranking strategy for partial tag match remains another interesting area.

Finally, our HashFile is efficient for image match based on color histogram.

Although SIFT feature has been widely used due to its invariance with respect to

translation, scaling, rotation and small distortions, we can not directly apply our

index for SIFT data as each image contains hundreds of SIFT descriptors. How

to efficiently support high dimensional set similarity is still an on-going research

problem.

BIBLIOGRAPHY

[1] Columbia geosearch. http://geosearch.cs.columbia.edu.

[2] Google local search. http:/www.google.com/local.

[3] http://en.wikipedia.org/wiki/exchangeable image file format.

[4] http://en.wikipedia.org/wiki/mashup

[5] http://en.wikipedia.org/wiki/web 2.0.

[6] http://geonames.usgs.gov.

[7] http://twitter.com/facebook/status/22372857292005376.

[8] http://www.lkozma.net/wpv/.

[9] http://www.mediawiki.org/wiki/api.

[10] http://www.usatoday.com/tech/news/2006-07-16-youtube-views x.htm.

[11] http://www.world-gazetteer.com.

132

133

[12] United nations department of economic and social affairs. http://www.world-

gazetteer.com.

[13] Usps - the united states postal services. http://www.usps.com.

[14] Yahoo regional. http://www.yahoo.com/regional.

[15] Dimitris Achlioptas. Database-friendly random projections: Johnson-

lindenstrauss with binary coins. J. Comput. Syst. Sci., 66(4):671–687, 2003.

[16] Charu C. Aggarwal, Alexander Hinneburg, and Daniel A. Keim. On the

surprising behavior of distance metrics in high dimensional spaces. In ICDT

’01: Proceedings of the 8th International Conference on Database Theory,

pages 420–434, London, UK, 2001. Springer-Verlag.

[17] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining asso-

ciation rules. In Proc. 20th Int. Conf. Very Large Data Bases, VLDB, pages

487–499, 1994.

[18] Sanjay Agrawal, Surajit Chaudhuri, and Gautam Das. Dbxplorer: A system

for keyword-based search over relational databases. In ICDE, pages 5–16,

2002.

[19] Sattam Alsubaiee, Alexander Behm, and Chen Li. Supporting location-based

approximate-keyword queries. In GIS, pages 61–70, 2010.

[20] Sattam Alsubaiee and Chen Li. Fuzzy keyword search on spatial data. In

DASFAA (2), pages 464–467, 2010.

[21] Einat Amitay, Nadav Har’El, Ron Sivan, and Aya Soffer. Web-a-where: geo-

tagging web content. In SIGIR ’04: Proceedings of the 27th annual interna-

134

tional ACM SIGIR conference on Research and development in information

retrieval, pages 273–280, New York, NY, USA, 2004. ACM.

[22] Lars Arge, Mark de Berg, Herman J. Haverkort, and Ke Yi. The priority

r-tree: A practically efficient and worst-case optimal r-tree. In SIGMOD

Conference, pages 347–358, 2004.

[23] Saeid Asadi, Guowei Yang, Xiaofang Zhou, Yuan Shi, Boxuan Zhai, and

Wendy Wen-Rong Jiang. Pattern-based extraction of addresses from web

page content. In Proceedings of the 10th Asia-Pacific web conference on

Progress in WWW research and development, APWeb’08, pages 407–418,

Berlin, Heidelberg, 2008. Springer-Verlag.

[24] Saeid Asadi, Xiaofang Zhou, and Guowei Yang. Using local popularity of

web resources for geo-ranking of search engine results. World Wide Web,

12(2):149–170, 2009.

[25] Ricardo A. Baeza-Yates and Berthier A. Ribeiro-Neto. Modern Information

Retrieval. ACM Press / Addison-Wesley, 1999.

[26] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard

Seeger. The r*-tree: An efficient and robust access method for points and

rectangles. In SIGMOD Conference, pages 322–331, 1990.

[27] Stefan Berchtold, Christian Böhm, H. V. Jagadish, Hans-Peter Kriegel, J??rg

Sander, and J??rg S. Independent quantization: An index compression tech-

nique for high-dimensional data spaces. In In ICDE, pages 577–588, 2000.

[28] Stefan Berchtold, Christian Böhm, and Hans-Peter Kriegal. The pyramid-

technique: towards breaking the curse of dimensionality. In Proceedings of

135

the 1998 ACM SIGMOD international conference on Management of data,

SIGMOD ’98, pages 142–153, New York, NY, USA, 1998. ACM.

[29] Stefan Berchtold, Daniel A. Keim, and Hans-Peter Kriegel. The x-tree: An

index structure for high-dimensional data. In VLDB ’96: Proceedings of the

22th International Conference on Very Large Data Bases, pages 28–39, San

Francisco, CA, USA, 1996. Morgan Kaufmann Publishers Inc.

[30] Kevin S. Beyer, Jonathan Goldstein, Raghu Ramakrishnan, and Uri Shaft.

When is ”nearest neighbor” meaningful? In ICDT, pages 217–235, 1999.

[31] Gaurav Bhalotia, Arvind Hulgeri, Charuta Nakhe, Soumen Chakrabarti, and

S. Sudarshan. Keyword searching and browsing in databases using banks. In

ICDE, pages 431–440, 2002.

[32] Ella Bingham and Heikki Mannila. Random projection in dimensionality

reduction: applications to image and text data. In KDD ’01: Proceedings of

the seventh ACM SIGKDD international conference on Knowledge discovery

and data mining, pages 245–250, New York, NY, USA, 2001. ACM.

[33] Karla A. V. Borges, Alberto H. F. Laender, Claudia B. Medeiros, and

Clodoveu A. Davis, Jr. Discovering geographic locations in web pages using

urban addresses. In Proceedings of the 4th ACM workshop on Geographi-

cal information retrieval, GIR ’07, pages 31–36, New York, NY, USA, 2007.

ACM.

[34] Thomas Brinkhoff, Hans-Peter Kriegel, and Bernhard Seeger. Efficient pro-

cessing of spatial joins using r-trees. In Proceedings of the 1993 ACM SIG-

MOD international conference on Management of data, SIGMOD ’93, pages

237–246, New York, NY, USA, 1993. ACM.

136

[35] Andrei Z. Broder, Moses Charikar, Alan M. Frieze, and Michael Mitzen-

macher. Min-wise independent permutations (extended abstract). In STOC,

pages 327–336, 1998.

[36] Orkut Buyukkokten, Junghoo Cho, Hector Garcia-Molina, Luis Gravano, and

Narayanan Shivakumar. Exploiting geographical location information of web

pages. In WebDB (Informal Proceedings), pages 91–96, 1999.

[37] Rui Cai, Chao Zhang, Lei Zhang, and Wei-Ying Ma. Scalable music rec-

ommendation by search. In MULTIMEDIA ’07: Proceedings of the 15th

international conference on Multimedia, pages 1065–1074, New York, NY,

USA, 2007. ACM.

[38] Xin Cao, Gao Cong, and Christian S. Jensen. Retrieving top-k prestige-based

relevant spatial web objects. PVLDB, 3(1):373–384, 2010.

[39] Tat-Seng Chua, Jinhui Tang, Richang Hong, Haojie Li, Zhiping Luo, and

Yan-Tao. Zheng. Nus-wide: A real-world web image database from national

university of singapore. In Proc. of ACM Conf. on Image and Video Retrieval

(CIVR’09), Santorini, Greece., July 8-10, 2009.

[40] Ondrej Chum, James Philbin, and Andrew Zisserman. Near duplicate image

detection: min-hash and tf-idf weighting. In BMVC, 2008.

[41] Sara Cohen, Jonathan Mamou, Yaron Kanza, and Yehoshua Sagiv. Xsearch:

A semantic search engine for xml, 2003.

[42] Gao Cong, Christian S. Jensen, and Dingming Wu. Efficient retrieval of the

top-k most relevant spatial web objects. PVLDB, 2(1):337–348, 2009.

137

[43] Antonio Corral, Yannis Manolopoulos, Yannis Theodoridis, and Michael Vas-

silakopoulos. Closest pair queries in spatial databases. In SIGMOD Confer-

ence, pages 189–200, 2000.

[44] Antonio Corral, Yannis Manolopoulos, Yannis Theodoridis, and Michael

Vassilakopoulos. Algorithms for processing k-closest-pair queries in spatial

databases. Data Knowl. Eng., 49(1):67–104, 2004.

[45] David J. Crandall, Lars Backstrom, Daniel Huttenlocher, and Jon Kleinberg.

Mapping the world’s photos. In WWW ’09: Proceedings of the 18th interna-

tional conference on World wide web, pages 761–770, New York, NY, USA,

2009. ACM.

[46] Silviu Cucerzan. Large-scale named entity disambiguation based on wikipedia

data. In EMNLP-CoNLL, pages 708–716, 2007.

[47] Junyan Ding, Luis Gravano, and Narayanan Shivakumar. Computing geo-

graphical scopes of web resources. In VLDB ’00: Proceedings of the 26th

International Conference on Very Large Data Bases, pages 545–556, San

Francisco, CA, USA, 2000. Morgan Kaufmann Publishers Inc.

[48] Wei Dong, Zhe Wang, Moses Charikar, and Kai Li. Efficiently matching sets

of features with random histograms. In MM ’08: Proceeding of the 16th ACM

international conference on Multimedia, pages 179–188, New York, NY, USA,

2008. ACM.

[49] Joel L. Fagan. Automatic phrase indexing for document retrieval: An ex-

amination of syntactic and non-syntactic methods. In SIGIR, pages 91–101,

1987.

138

[50] Ian De Felipe, Vagelis Hristidis, and Naphtali Rishe. Keyword search on

spatial databases. In ICDE, pages 656–665, 2008.

[51] Katerina T. Frantzi. Incorporating context information for the extraction of

terms. In ACL, pages 501–503, 1997.

[52] Volker Gaede and Oliver Günther. Multidimensional access methods. ACM

Comput. Surv., 30(2):170–231, 1998.

[53] Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Similarity search in high

dimensions via hashing. In VLDB ’99: Proceedings of the 25th International

Conference on Very Large Data Bases, pages 518–529, San Francisco, CA,

USA, 1999. Morgan Kaufmann Publishers Inc.

[54] Richard Göbel, Andreas Henrich, Raik Niemann, and Daniel Blank. A hybrid

index structure for geo-textual searches. In CIKM, pages 1625–1628, 2009.

[55] Lin Guo, Feng Shao, Chavdar Botev, and Jayavel Shanmugasundaram.

Xrank: Ranked keyword search over xml documents, 2003.

[56] Antonin Guttman. R-trees: A dynamic index structure for spatial searching.

In SIGMOD Conference, pages 47–57, 1984.

[57] Ramaswamy Hariharan, Bijit Hore, Chen Li, and Sharad Mehrotra. Pro-

cessing spatial-keyword (sk) queries in geographic information retrieval (gir)

systems. In SSDBM, page 16, 2007.

[58] James Hays and Alexei A. Efros. im2gps: estimating geographic information

from a single image. In Proceedings of the IEEE Conf. on Computer Vision

and Pattern Recognition (CVPR), 2008.

139

[59] Vagelis Hristidis and Yannis Papakonstantinou. Discover: Keyword search in

relational databases. In VLDB, pages 670–681, 2002.

[60] Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: towards

removing the curse of dimensionality. In STOC ’98: Proceedings of the thir-

tieth annual ACM symposium on Theory of computing, pages 604–613, New

York, NY, USA, 1998. ACM.

[61] H. V. Jagadish, Beng Chin Ooi, Kian-Lee Tan, Cui Yu, and Rui Zhang.

idistance: An adaptive b+-tree based indexing method for nearest neighbor

search. ACM Trans. Database Syst., 30(2):364–397, 2005.

[62] William B. Johnson and Joram Lindenstrauss. Extensions of lipschitz map-

ping into hilbert space. Contemporary Mathematics, 26:189–206, 1984.

[63] Varun Kacholia, Shashank Pandit, Soumen Chakrabarti, S. Sudarshan, Rushi

Desai, and Hrishikesh Karambelkar. Bidirectional expansion for keyword

search on graph databases. In VLDB, pages 505–516, 2005.

[64] Norio Katayama and Shin’ichi Satoh. The sr-tree: an index structure for

high-dimensional nearest neighbor queries. In SIGMOD ’97: Proceedings of

the 1997 ACM SIGMOD international conference on Management of data,

pages 369–380, New York, NY, USA, 1997. ACM.

[65] Yan Ke, Rahul Sukthankar, and Larry Huston. An efficient parts-based near-

duplicate and sub-image retrieval system. InMULTIMEDIA ’04: Proceedings

of the 12th annual ACM international conference on Multimedia, pages 869–

876, New York, NY, USA, 2004. ACM.

140

[66] Yan Ke, Rahul Sukthankar, Larry Huston, Yan Ke, and Rahul Sukthankar.

Efficient near-duplicate detection and sub-image retrieval. In In ACM Mul-

timedia, pages 869–876, 2004.

[67] Lyndon S. Kennedy and Mor Naaman. Generating diverse and representative

image search results for landmarks. In WWW ’08: Proceeding of the 17th

international conference on World Wide Web, pages 297–306, New York,

NY, USA, 2008. ACM.

[68] Ali Khodaei, Cyrus Shahabi, and Chen Li. Hybrid indexing and seamless

ranking of spatial and textual features of web documents. In DEXA (1),

pages 450–466, 2010.

[69] Jon M. Kleinberg. Two algorithms for nearest-neighbor search in high di-

mensions. In STOC, pages 599–608, 1997.

[70] Nick Koudas, Beng Chin Ooi, Heng Tao Shen, and Anthony K. H. Tung.

Ldc: Enabling search by partial distance in a hyper-dimensional space, 2004.

[71] Yin-Hsi Kuo, Kuan-Ting Chen, Chien-Hsing Chiang, and Winston H. Hsu.

Query expansion for hash-based image object retrieval. In MM ’09: Proceed-

ings of the seventeen ACM international conference on Multimedia, pages

65–74, New York, NY, USA, 2009. ACM.

[72] Eyal Kushilevitz, Rafail Ostrovsky, and Yuval Rabani. Efficient search for

approximate nearest neighbor in high dimensional spaces. In STOC ’98:

Proceedings of the thirtieth annual ACM symposium on Theory of computing,

pages 614–623, New York, NY, USA, 1998. ACM.

141

[73] Chen Li, Bin Wang, and Xiaochun Yang. Vgram: Improving performance

of approximate queries on string collections using variable-length grams. In

VLDB, pages 303–314, 2007.

[74] Guoliang Li, Jianhua Feng, Feng Lin, and Lizhu Zhou. Progressive ranking

for efficient keyword search over relational databases. In BNCOD, pages

193–197, 2008.

[75] Guoliang Li, Beng Chin Ooi, Jianhua Feng, Jianyong Wang, and Lizhu Zhou.

Ease: an effective 3-in-1 keyword search method for unstructured, semi-

structured and structured data. In SIGMOD Conference, pages 903–914,

2008.

[76] Yunpeng Li, David J. Crandall, and Daniel P. Huttenlocher. Landmark clas-

sification in large-scale image collections. International Conference on Com-

puter Vision, 2009.

[77] King-Ip Lin, H. V. Jagadish, and Christos Faloutsos. The tv-tree: An index

structure for high-dimensional data. Technical Report 4, 1994.

[78] Fang Liu, Clement T. Yu, Weiyi Meng, and Abdur Chowdhury. Effective

keyword search in relational databases. In SIGMOD Conference, pages 563–

574, 2006.

[79] Yiming Liu, Dong Xu, Ivor W. Tsang, and Jiebo Luo. Using large-scale web

data to facilitate textual query based retrieval of consumer photos. In ACM

Multimedia, pages 55–64, 2009.

[80] Ziyang Liu and Yi Chen. Identifying meaningful return information for xml

keyword search. In SIGMOD Conference, pages 329–340, 2007.

142

[81] David G. Lowe. Distinctive image features from scale-invariant keypoints.

International Journal of Computer Vision, 60(2):91–110, 2004.

[82] Yi Luo, Xuemin Lin, Wei Wang, and Xiaofang Zhou. Spark: top-k keyword

query in relational databases. In SIGMOD Conference, pages 115–126, 2007.

[83] Qin Lv, William Josephson, Zhe Wang, Moses Charikar, and Kai Li. Multi-

probe lsh: efficient indexing for high-dimensional similarity search. In Pro-

ceedings of the 33rd international conference on Very large data bases, VLDB

’07, pages 950–961. VLDB Endowment, 2007.

[84] Nikos Mamoulis and Dimitris Papadias. Multiway spatial joins. ACM Trans.

Database Syst., 26(4):424–475, 2001.

[85] Alexander Markowetz, Yen-Yu Chen, Torsten Suel, Xiaohui Long, and Bern-

hard Seeger. Design and implementation of a geographic search engine. In

WebDB, pages 19–24, 2005.

[86] Kevin S. McCurley. Geospatial mapping and navigation of the web. In

WWW, pages 221–229, 2001.

[87] Bernd-Uwe Pagel, Hans-Werner Six, Heinrich Toben, and Peter Widmayer.

Towards an analysis of range query performance in spatial data structures.

In PODS, pages 214–221, New York, NY, USA, 1993. ACM.

[88] Dimitris Papadias and Dinos Arkoumanis. Search algorithms for multiway

spatial joins. International Journal of Geographical Information Science,

16(7):613–639, 2002.

[89] Dimitris Papadias, Nikos Mamoulis, and Yannis Theodoridis. Processing and

optimization of multiway spatial joins using r-trees. In PODS, pages 44–55,

1999.

143

[90] Ho-Hyun Park, Guang-Ho Cha, and Chin-Wan Chung. Multi-way spatial

joins using r-trees: Methodology and performance evaluation. In SSD, pages

229–250, 1999.

[91] Ross S. Purves, Paul Clough, Christopher B. Jones, Avi Arampatzis, Bene-

dicte Bucher, David Finch, Gaihua Fu, Hideo Joho, Awase Khirni Syed, Sub-

odh Vaid, and Bisheng Yang. The design and implementation of spirit: a

spatially aware search engine for information retrieval on the internet. Int.

J. Geogr. Inf. Sci., 21(7):717–745, 2007.

[92] Arun Qamra and Edward Y. Chang. Scalable landmark recognition using

extent. Multimedia Tools Appl., 38(2):187–208, 2008.

[93] Till Quack, Bastian Leibe, and Luc Van Gool. World-scale mining of objects

and events from community photo collections. In CIVR ’08: Proceedings of

the 2008 international conference on Content-based image and video retrieval,

pages 47–56, New York, NY, USA, 2008. ACM.

[94] John T. Robinson. The k-d-b-tree: a search structure for large multidi-

mensional dynamic indexes. In SIGMOD ’81: Proceedings of the 1981 ACM

SIGMOD international conference on Management of data, pages 10–18, New

York, NY, USA, 1981. ACM.

[95] Nick Roussopoulos, Stephen Kelley, and Frédéic Vincent. Nearest neighbor

queries. In SIGMOD Conference, pages 71–79, 1995.

[96] Yasushi Sakurai, Masatoshi Yoshikawa, Shunsuke Uemura, and Haruhiko Ko-

jima. The a-tree: An index structure for high-dimensional spaces using rela-

tive approximation. In Proceedings of the 26th International Conference on

144

Very Large Data Bases, VLDB ’00, pages 516–526, San Francisco, CA, USA,

2000. Morgan Kaufmann Publishers Inc.

[97] Hanan Samet. The quadtree and related hierarchical data structures. ACM

Comput. Surv., 16(2):187–260, 1984.

[98] Timos K. Sellis, Nick Roussopoulos, and Christos Faloutsos. The r+-tree:

A dynamic index for multi-dimensional objects. In VLDB, pages 507–518,

1987.

[99] Mehdi Sharifzadeh, Mohammad R. Kolahdouzan, and Cyrus Shahabi. The

optimal sequenced route query. VLDB J., 17(4):765–787, 2008.

[100] Mehdi Sharifzadeh and Cyrus Shahabi. Processing optimal sequenced route

queries using voronoi diagrams. GeoInformatica, 12(4):411–433, 2008.

[101] Börkur Sigurbjörnsson and Roelof van Zwol. Flickr tag recommendation

based on collective knowledge. In WWW ’08: Proceeding of the 17th interna-

tional conference on World Wide Web, pages 327–336, New York, NY, USA,

2008. ACM.

[102] Amit Singhal, Chris Buckley, and Mandar Mitra. Pivoted document length

normalization. In SIGIR ’96: Proceedings of the 19th annual international

ACM SIGIR conference on Research and development in information re-

trieval, pages 21–29, New York, NY, USA, 1996. ACM.

[103] Benno Stein. Principles of hash-based text retrieval. In SIGIR ’07: Proceed-

ings of the 30th annual international ACM SIGIR conference on Research

and development in information retrieval, pages 527–534, New York, NY,

USA, 2007. ACM.

145

[104] George Stockman and Linda G. Shapiro. Computer Vision. Prentice Hall

PTR, Upper Saddle River, NJ, USA, 2001.

[105] Yufei Tao, Ke Yi, Cheng Sheng, and Panos Kalnis. Quality and efficiency in

high dimensional nearest neighbor search. In SIGMOD ’09: Proceedings of

the 35th SIGMOD international conference on Management of data, pages

563–576, New York, NY, USA, 2009. ACM.

[106] Yufei Tao, Ke Yi, Cheng Sheng, and Panos Kalnis. Efficient and accurate

nearest neighbor and closest pair search in high-dimensional space. ACM

Trans. Database Syst., 35(3), 2010.

[107] Takashi Tomokiyo and Matthew Hurst. A language model approach to

keyphrase extraction. In Proceedings of the ACL 2003 workshop on Mul-

tiword expressions: analysis, acquisition and treatment - Volume 18, MWE

’03, pages 33–40, Stroudsburg, PA, USA, 2003. Association for Computa-

tional Linguistics.

[108] Esko Ukkonen. Approximate string matching with q-grams and maximal

matches. Theor. Comput. Sci., 92(1):191–211, 1992.

[109] Chuang Wang, Xing Xie, Lee Wang, Yansheng Lu, and Wei-Ying Ma. De-

tecting geographic locations from web resources. In GIR ’05: Proceedings

of the 2005 workshop on Geographic information retrieval, pages 17–24, New

York, NY, USA, 2005. ACM.

[110] Roger Weber, Hans-Jörg Schek, and Stephen Blott. A quantitative analy-

sis and performance study for similarity-search methods in high-dimensional

spaces. In VLDB ’98: Proceedings of the 24rd International Conference on

146

Very Large Data Bases, pages 194–205, San Francisco, CA, USA, 1998. Mor-

gan Kaufmann Publishers Inc.

[111] Jeremy Witmer and Jugal Kalita. Extracting geospatial entities from

wikipedia. In Proceedings of the 2009 IEEE International Conference on Se-

mantic Computing, ICSC ’09, pages 450–457, Washington, DC, USA, 2009.

IEEE Computer Society.

[112] Ian H. Witten, Gordon W. Paynter, Eibe Frank, Carl Gutwin, and Craig G.

Nevill-Manning. Kea: Practical automatic keyphrase extraction. In ACM

DL, pages 254–255, 1999.

[113] Yu Xu and Yannis Papakonstantinou. Efficient keyword search for smallest

lcas in xml databases. In SIGMOD Conference, pages 537–538, 2005.

[114] Yin Yang, Nilesh Bansal, Wisam Dakka, Panagiotis G. Ipeirotis, Nick

Koudas, and Dimitris Papadias. Query by document. In WSDM, pages

34–43, 2009.

[115] Bin Yao, Feifei Li, Marios Hadjieleftheriou, and Kun Hou. Approximate

string search in spatial databases. In ICDE, pages 545–556, 2010.

[116] Seiji Yokoji, Katsumi Takahashi, and Nobuyuki Miura. Kokono search: A

location based search engine. In WWW Posters, 2001.

[117] Cui Yu, Beng Chin Ooi, Kian-Lee Tan, and H. V. Jagadish. Indexing the

distance: An efficient method to knn processing. In VLDB ’01: Proceedings of

the 27th International Conference on Very Large Data Bases, pages 421–430,

San Francisco, CA, USA, 2001. Morgan Kaufmann Publishers Inc.

[118] Yan-Tao Zheng, Ming Zhao, Yang Song, Hartwig Adam, Ulrich Buddemeier,

Alessandro Bissacco, Fernando Brucher, Tat-Seng Chua, Hartmut Neven,

147

and Jay Yagnik. Tour the world: a technical demonstration of a web-scale

landmark recognition engine. In MM ’09: Proceedings of the seventeen ACM

international conference on Multimedia, pages 961–962, New York, NY, USA,

2009. ACM.

