3 research outputs found

    Wound-healing activity of polyhexamethyleneguanidine hydrochloride hydrogel and extract of Bergenia crassifolia on thermal burn simulation

    Get PDF
    The results of a study of the wound healing activity of a composition based on the hydrogel of polyhexamethylene guanidine hydrochloride and Bergenia crassifolia extract, under conditions of modeling thermal burns in laboratory animals (rats), are presented. It was found that the composition affects the change in the summary antioxidant and leukocyte activity towards the normalization of these indicators. Morphological analysis of the slices showed that, under the influence of a polyhexamethylene guanidine hydrogel composition and B.crassifolia extract, healing proceeds more intensively than in the control group and is manifested by a smaller thickness of the leukocyte-necrotic scab, accelerated epithelization, and complete closure of the skin defect

    The Functional Properties of Bread Enriched with Essential Fatty Acids

    Get PDF
    We developed ω-3-enriched bread by adding a liposomal polyunsaturated fatty acids (PUFAs) concentrate to the bread recipe. We determined that subsequent feeding of the ω-3-enriched bread to experimental animals in the alimentary dyslipidaemia state led to normalisation of the lipid profile of the blood serum, with a decrease in the total cholesterol, triglycerides, and low-density and very lowdensity lipoproteins. The high-density lipoproteins, antioxidants, reduced glutathione and glutathione reductase activity index increased compared to the corresponding indicators in animals with alimentary dyslipidaemia that were fed bread without ω-3. The ω-3-enriched bread diet significantly decreased harmful oxidation products (diene conjugates and malondialdehyde) in the blood plasma, erythrocytes and liver. Therefore, the results suggested that bread enriched with ω-3 fatty acids is a functional food with hypolipidaemic action. The results on the total content of fatty acids in lipids from bread samples prepared according to a standard recipe and bread enriched with concentrate showed that the relative content of omega-3 PUFAs in the fortified bread significantly increased by 3.2 times compared to bread without the addition of concentrate. The additive did not change the consumer qualities of the finished product (taste and smell of the bread). Keywords: alimentary dyslipidaemia, antioxidant effect, bread, functional food, lipid profile, ω-3 polyunsaturated fatty acid

    Enzymatic Hydrolysis of Soy Protein

    No full text
    Soy continues to be one of the top sources of vegetable protein. Structurally modified soy proteins and processed products are used as part of functional foods. Enzymatic hydrolysates of food proteins have different degrees of hydrolysis and functional profiles, hence the constant search for the optimal hydrolysis parameters. The present research objective was to design a two-stage enzymatic conversion process of soy protein using mathematical methods, as well as to evaluate the antioxidant properties of the hydrolysate in laboratory conditions. Soy protein isolate was tested to define the maximal value of the hydrolysis degree. It underwent a series of two-factor experiments in the presence of pepsin and trypsin. The study focused on the hydrolysis time and the enzyme-substrate ratio. The results were optimized using the response surface methodology in MathCad 15. The total antioxidant activity of the hydrolysate during hydrolysis was determined on a Tsvet-Yauza-01-AA chromatograph using the amperometric method. For the pepsin test, the processing time was 7 h and the enzyme-to-substrate ratio was 1:22. For the trypsin test, the time was 7 h and the ratio was 1:30. The mathematical modeling revealed the following optimal parameters. The first stage involved hydrolysis with pepsin for 5 h at an enzyme-to-substrate ratio of 1:20; the second stage involved hydrolysis with trypsin for 3 h at an enzyme-to-substrate ratio of 1:19. The resulting hydrolysate demonstrated 88% hydrolysis. The highest summary antioxidant activity was registered after 5 h of hydrolysis and amounted to about 250 mg/100 mL. The resulting enzymatic hydrolysate of soy protein can be used as a food component or an antioxidant feed additive. The obtained peptides can immobilize essential microelements, e.g., Zn, I, and Se, as well as produce polyvalent complexes. Further studies will be aimed at the residual antigenicity of the hydrolysate and other functional indicators
    corecore