13 research outputs found

    Significance of using a nonlinear analysis technique, the Lyapunov exponent, on the understanding of the dynamics of the cardiorespiratory system in rats

    No full text
    Background/aim: Pneumocardiography (PNCG) is the recording method of cardiac-induced tracheal air flow and pressure pulsations in the respiratory airways. PNCG signals reflect both the lung and heart actions and could be accurately recorded in spontaneously breathing anesthetized rats. Nonlinear analysis methods, including the Lyapunov exponent, can be used to explain the biological dynamics of systems such as the cardiorespiratory system. Materials and methods: In this study, we recorded tracheal air flow signals, including PNCG signals, from 3 representative anesthetized rats and analyzed the nonlinear behavior of these complex signals using Lyapunov exponents. Results: Lyapunov exponents may also be used to determine the normal and pathological structure of biological systems. If the signals have at least one positive Lyapunov exponent, the signals reflect chaotic activity, as seen in PNCG signals in rats; the largest Lyapunov exponents of the signals of the healthy rats were greater than zero in this study. Conclusion: A method was proposed to determine the diagnostic and prognostic values of the cardiorespiratory system of rats using the arrangement of the PNCG and Lyapunov exponents, which may be monitored as vitality indicators

    Significance of using a nonlinear analysis technique, the Lyapunov exponent, on the understanding of the dynamics of the cardiorespiratory system in rats

    No full text
    Background/aim: Pneumocardiography (PNCG) is the recording method of cardiac-induced tracheal air flow and pressure pulsations in the respiratory airways. PNCG signals reflect both the lung and heart actions and could be accurately recorded in spontaneously breathing anesthetized rats. Nonlinear analysis methods, including the Lyapunov exponent, can be used to explain the biological dynamics of systems such as the cardiorespiratory system

    Significance of using a nonlinear analysis technique, the Lyapunov exponent, on the understanding of the dynamics of the cardiorespiratory system in rats

    No full text
    Background/aim: Pneumocardiography (PNCG) is the recording method of cardiac-induced tracheal air flow and pressure pulsations in the respiratory airways. PNCG signals reflect both the lung and heart actions and could be accurately recorded in spontaneously breathing anesthetized rats. Nonlinear analysis methods, including the Lyapunov exponent, can be used to explain the biological dynamics of systems such as the cardiorespiratory system

    Sensitively recorded breathing signals of rats and their nonlinear dynamics

    No full text
    Nonlinear dynamical properties of sensitively recorded breathing signals (SRBS), which include cardiac induced air flow pulsations so-called pneumocardiogram (PNCG) signals, are investigated, in this methodological study. For this purpose, we assessed the SRBS of laboratory rat. The nonlinear behaviors of SRBS were investigated by the reconstructing phase space, using the autocorrelation function and the false nearest neighbor method. The chaotic SRBS attractors were discussed from the point of view of the cardiopulmonary system. This method can be used to assess the heart performance and respiratory mechanics, and might be useful to design for the physiological studies of cardiorespiratory system in small laboratory animals. (C) 2007 Elsevier B.V. All rights reserved
    corecore