107 research outputs found

    Dynamical control of matter-wave tunneling in periodic potentials

    Full text link
    We report on measurements of dynamical suppression of inter-well tunneling of a Bose-Einstein condensate (BEC) in a strongly driven optical lattice. The strong driving is a sinusoidal shaking of the lattice corresponding to a time-varying linear potential, and the tunneling is measured by letting the BEC freely expand in the lattice. The measured tunneling rate is reduced and, for certain values of the shaking parameter, completely suppressed. Our results are in excellent agreement with theoretical predictions. Furthermore, we have verified that in general the strong shaking does not destroy the phase coherence of the BEC, opening up the possibility of realizing quantum phase transitions by using the shaking strength as the control parameter.Comment: 5 pages, 3 figure

    Resonantly enhanced tunneling of Bose-Einstein condensates in periodic potentials

    Full text link
    We report on measurements of resonantly enhanced tunneling of Bose-Einstein condensates loaded into an optical lattice. By controlling the initial conditions of our system we were able to observe resonant tunneling in the ground and the first two excited states of the lattice wells. We also investigated the effect of the intrinsic nonlinearity of the condensate on the tunneling resonances.Comment: accepted for publication in Phys. Rev. Letter

    Observation of St\"{u}ckelberg oscillations in accelerated optical lattices

    Full text link
    We report the experimental observation of St\"{u}ckelberg oscillations of matter waves in optical lattices. Extending previous work on Landau-Zener tunneling of Bose-Einstein condensates in optical lattices, we study the effects of the accumulated phase between two successive crossings of the Brillouin zone edge. Our results agree well with a simple model for multiple Landau-Zener tunneling events taking into account the band structure of the optical lattice.Comment: 4 pages, 4 figure

    Observation of photon-assisted tunneling in optical lattices

    Full text link
    We have observed tunneling suppression and photon-assisted tunneling of Bose-Einstein condensates in an optical lattice subjected to a constant force plus a sinusoidal shaking. For a sufficiently large constant force, the ground energy levels of the lattice are shifted out of resonance and tunneling is suppressed; when the shaking is switched on, the levels are coupled by low-frequency photons and tunneling resumes. Our results agree well with theoretical predictions and demonstrate the usefulness of optical lattices for studying solid-state phenomena.Comment: 5 pages, 3 figure

    AC-induced superfluidity

    Full text link
    We argue that a system of ultracold bosonic atoms in a tilted optical lattice can become superfluid in response to resonant AC forcing. Among others, this allows one to prepare a Bose-Einstein condensate in a state associated with a negative effective mass. Our reasoning is backed by both exact numerical simulations for systems consisting of few particles, and by a theoretical approach based on Floquet-Fock states.Comment: Accepted for publication in Europhysics letters, 6 pages, 4 figures, Changes in v2: reference 7 replaced by a more recent on

    Controllable diffusion of cold atoms in a harmonically driven and tilted optical lattice: Decoherence by spontaneous emission

    Full text link
    We have studied some transport properties of cold atoms in an accelerated optical lattice in the presence of decohering effects due to spontaneous emission. One new feature added is the effect of an external AC drive. As a result we obtain a tunable diffusion coefficient and it's nonlinear enhancement with increasing drive amplitude. We report an interesting maximum diffusion condition.Comment: 16 pages, 7 figures, revised versio

    Tunneling control and localization for Bose-Einstein condensates in a frequency modulated optical lattice

    Full text link
    The similarity between matter waves in periodic potential and solid-state physics processes has triggered the interest in quantum simulation using Bose-Fermi ultracold gases in optical lattices. The present work evidences the similarity between electrons moving under the application of oscillating electromagnetic fields and matter waves experiencing an optical lattice modulated by a frequency difference, equivalent to a spatially shaken periodic potential. We demonstrate that the tunneling properties of a Bose-Einstein condensate in shaken periodic potentials can be precisely controlled. We take additional crucial steps towards future applications of this method by proving that the strong shaking of the optical lattice preserves the coherence of the matter wavefunction and that the shaking parameters can be changed adiabatically, even in the presence of interactions. We induce reversibly the quantum phase transition to the Mott insulator in a driven periodic potential.Comment: Laser Physics (in press

    Antemortem CSF Aβ42/Aβ40 ratio predicts Alzheimer's disease pathology better than Aβ42 in rapidly progressive dementias

    Get PDF
    Objective: Despite the critical importance of pathologically confirmed samples for biomarker validation, only a few studies have correlated CSF Aβ42 values in vivo with postmortem Alzheimer's disease (AD) pathology, while none evaluated the CSF Aβ42/Aβ40 ratio. We compared CSF Aβ42 and Aβ42/Aβ40 ratio as biomarkers predicting AD neuropathological changes in patients with a short interval between lumbar puncture and death. Methods: We measured CSF Aβ40 and Aβ42 and assessed AD pathology in 211 subjects with rapidly progressive dementia (RPD) and a definite postmortem diagnosis of Creutzfeldt-Jakob disease (n = 159), AD (n = 12), dementia with Lewy bodies (DLB, n = 4), AD/DLB mixed pathologies (n = 5), and various other pathologies (n = 31). Results: The score reflecting the severity of Aβ pathology showed a better correlation with ln(Aβ42/Aβ40) (R 2  = 0.506, β = −0.713, P < 0.001) than with ln(Aβ42) (R 2  = 0.206, β = −0.458, P < 0.001), which was confirmed after adjusting for covariates. Aβ42/Aβ40 ratio showed significantly higher accuracy than Aβ42 in the distinction between cases with or without AD pathology (AUC 0.818 ± 0.028 vs. 0.643 ± 0.039), especially in patients with Aβ42 levels ≤495 pg/mL (AUC 0.888 ± 0.032 vs. 0.518 ± 0.064). Using a cut-off value of 0.810, the analysis of Aβ42/Aβ40 ratio yielded 87.0% sensitivity, 88.2% specificity in the distinction between cases with an intermediate-high level of AD pathology and those with low level or no AD pathology. Interpretation: The present data support the use of CSF Aβ42/Aβ40 ratio as a biomarker of AD pathophysiology and noninvasive screener for Aβ pathology burden, and its introduction in the research diagnostic criteria for AD

    Great occipital nerve long-acting steroid injections in cluster headache therapy: an observational prospective study

    Get PDF
    Background: Injections targeting the occipital nerve are used to reduce headache attacks and abort cluster bouts in cluster headache patients. There is no widely accepted agreement over the optimal technique of injection, type and doses of steroids and/or anesthetics to use, as well as injection regimens. The aim of this study was to verify the effectiveness and safety of greater occipital nerve long-acting steroid injections in the management of episodic and chronic cluster headache. Methods: We conducted a prospective observational cohort study on episodic (ECH) and chronic cluster headache patients (CCH). ECH were included in the study at the beginning of a cluster period. Three injections with 60 mg methylprednisolone were performed on alternate days. We registered the frequency and intensity of attacks three days before and 3, 7 and 30 days after the treatment, the latency of cluster relapse, adverse events, scores evaluating anxiety (Zung scale), depression (Beck’s Depression Scale) and quality of life (Disability Assessment Schedule II, 12-Item Self-Administered Version). Primary outcome was the interruption of the cluster after the three injections. Responders conducted a follow-up period of 12 months. Results: We enrolled 60 patients, 47 with ECH and 13 with CCH. We observed a complete response in 47.8% (22/46) of episodic and 33.3% (4/12) of chronic patients. Moreover, a partial response (reduction of at least 50% of attacks) was obtained in further 10.8% (5/46) of episodic and in 33.3% (4/12) of chronic patients at 1 month. Median pain-free period was of 3 months for CCH responders. Only mild adverse events were reported in 38.3% (23/58) cases. Conclusions: We suggest three greater occipital nerve injections of 60 mg methylprednisolone on alternate days as useful therapy in episodic and chronic cluster headache. This leads to a long pain-free period in chronic forms. Adverse effects are mild and support its use as first choice. Trial registration: The study was inserted in AIFA observational studies register
    corecore