We report on measurements of dynamical suppression of inter-well tunneling of
a Bose-Einstein condensate (BEC) in a strongly driven optical lattice. The
strong driving is a sinusoidal shaking of the lattice corresponding to a
time-varying linear potential, and the tunneling is measured by letting the BEC
freely expand in the lattice. The measured tunneling rate is reduced and, for
certain values of the shaking parameter, completely suppressed. Our results are
in excellent agreement with theoretical predictions. Furthermore, we have
verified that in general the strong shaking does not destroy the phase
coherence of the BEC, opening up the possibility of realizing quantum phase
transitions by using the shaking strength as the control parameter.Comment: 5 pages, 3 figure