28 research outputs found

    The Role of RIPK1 Kinase Activity in Regulating Inflammation and Necroptotic Death

    Get PDF
    Necroptosis, a type of regulated necrotic cell death, involves cell membrane permeabilization and has been implicated in various acute and chronic pro-inflammatory diseases, including ischemia-reperfusion injury and neurodegenerative diseases. By using in vitro reconstitution studies and a chemical inhibitor, the kinase activity of the serine/threonine kinase RIPK1 had been shown to regulate necroptotic signaling downstream of TNF and Toll-like receptors (TLRs). To investigate the contribution of RIPK1 kinase activity to inflammation and necroptosis in vivo, we generated kinase inactive RIPK1 knock-in mice. Utilizing fibroblasts and macrophages from these mice, we demonstrate that RIPK1 kinase activity is required for necroptotic complex formation and death induction downstream of TNFR1 and TLRs 3 and 4. We show that RIPK1 kinase inactive mice are resistant to TNF-induced shock and exhibit impaired upregulation of TNF-induced cytokines and chemokines in vitro and in vivo. By using bone marrow reconstitution experiments, we demonstrate that RIPK1 kinase activity in a non-hematopoietic lineage drives TNF-induced lethality. We establish that RIPK1 kinase activity is required for TNF-induced increases in intestinal and vascular permeability and clotting, and implicate endothelial cell necroptosis as an underlying factor contributing to TNF/zVAD-induced shock. Thus, work in this thesis reveals that RIPK1 kinase inhibitors may have promise in treating shock and sepsis

    RIPK1 Mediates TNF-Induced Intestinal Crypt Apoptosis During Chronic NF-kappaB Activation

    Get PDF
    BACKGROUND AND AIMS: Tumor necrosis factor (TNF) is a major pathogenic effector and a therapeutic target in inflammatory bowel disease (IBD), yet the basis for TNF-induced intestinal epithelial cell (IEC) death is unknown, because TNF does not kill normal IECs. Here, we investigated how chronic nuclear factor (NF)- kappaB activation, which occurs in human IBD, promotes TNF-dependent IEC death in mice. METHODS: Human IBD specimens were stained for p65 and cleaved caspase-3. C57BL/6 mice with constitutively active IKKbeta in IEC (Ikkbeta(EE)(IEC)), Ripk1(D138N/D138N) knockin mice, and Ripk3(-/-) mice were injected with TNF or lipopolysaccharide. Enteroids were also isolated from these mice and challenged with TNF with or without RIPK1 and RIPK3 inhibitors or butylated hydroxyanisole. Ripoptosome-mediated caspase-8 activation was assessed by immunoprecipitation. RESULTS: NF-kappaB activation in human IBD correlated with appearance of cleaved caspase-3. Congruently, unlike normal mouse IECs that are TNF-resistant, IECs in Ikkbeta(EE)(IEC) mice and enteroids were susceptible to TNF-dependent apoptosis, which depended on the protein kinase function of RIPK1. Constitutively active IKKbeta facilitated ripoptosome formation, a RIPK1 signaling complex that mediates caspase-8 activation by TNF. Butylated hydroxyanisole treatment and RIPK1 inhibitors attenuated TNF-induced and ripoptosome-mediated caspase-8 activation and IEC death in vitro and in vivo. CONCLUSIONS: Contrary to common expectations, chronic NF-kappaB activation induced intestinal crypt apoptosis after TNF stimulation, resulting in severe mucosal erosion. RIPK1 kinase inhibitors selectively inhibited TNF destructive properties while preserving its survival and proliferative properties, which do not require RIPK1 kinase activity. RIPK1 kinase inhibition could be a potential treatment for IBD

    RIP kinase 1-dependent endothelial necroptosis underlies systemic inflammatory response syndrome

    Get PDF
    Receptor interacting protein kinase 1 (RIPK1) has important kinase-dependent and kinase-independent scaffolding functions that activate or prevent apoptosis or necroptosis in a cell context-dependent manner. The kinase activity of RIPK1 mediates hypothermia and lethality in a mouse model of TNF-induced shock, reflecting the hyperinflammatory state of systemic inflammatory response syndrome (SIRS), where the proinflammatory cytokine storm has long been viewed as detrimental. Here, we demonstrate that cytokine and chemokine levels did not predict survival and, importantly, that kinase-inactive Ripk1D138N/D138N hematopoietic cells afforded little protection from TNF- or TNF/zVAD-induced shock in reconstituted mice. Unexpectedly, RIPK1 kinase-inactive mice transplanted with WT hematopoietic cells remained resistant to TNF-induced shock, revealing that a nonhematopoietic lineage mediated protection. TNF-treated Ripk1D138N/D138N mice exhibited no significant increases in intestinal or vascular permeability, nor did they activate the clotting cascade. We show that TNF administration damaged the liver vascular endothelium and induced phosphorylated mixed lineage kinase domain-like (phospho-MLKL) reactivity in endothelial cells isolated from TNF/zVAD-treated WT, but not Ripk1D138N/D138N, mice. These data reveal that the tissue damage present in this SIRS model is reflected, in part, by breaks in the vasculature due to endothelial cell necroptosis and thereby predict that RIPK1 kinase inhibitors may provide clinical benefit to shock and/or sepsis patients

    CYLD Proteolysis Protects Macrophages from TNF-Mediated Auto-necroptosis Induced by LPS and Licensed by Type I IFN

    Get PDF
    SummaryTumor necrosis factor (TNF) induces necroptosis, a RIPK3/MLKL-dependent form of inflammatory cell death. In response to infection by Gram-negative bacteria, multiple receptors on macrophages, including TLR4, TNF, and type I IFN receptors, are concurrently activated, but it is unclear how they crosstalk to regulate necroptosis. We report that TLR4 activates CASPASE-8 to cleave and remove the deubiquitinase cylindromatosis (CYLD) in a TRIF- and RIPK1-dependent manner to disable necroptosis in macrophages. Inhibiting CASPASE-8 leads to CYLD-dependent necroptosis caused by the TNF produced in response to TLR4 ligation. While lipopolysaccharides (LPS)-induced necroptosis was abrogated in Tnf−/− macrophages, a soluble TNF antagonist was not able to do so in Tnf+/+ macrophages, indicating that necroptosis occurs in a cell-autonomous manner. Surprisingly, TNF-mediated auto-necroptosis of macrophages requires type I IFN, which primes the expression of key necroptosis-signaling molecules, including TNFR2 and MLKL. Thus, the TNF necroptosis pathway is regulated by both negative and positive crosstalk

    RIPK1 Mediates TNF-Induced Intestinal Crypt Apoptosis During Chronic NF-κB Activation

    Get PDF
    Tumor necrosis factor (TNF) is a major pathogenic effector and a therapeutic target in inflammatory bowel disease (IBD), yet the basis for TNF-induced intestinal epithelial cell (IEC) death is unknown, because TNF does not kill normal IECs. Here, we investigated how chronic nuclear factor (NF)- κB activation, which occurs in human IBD, promotes TNF-dependent IEC death in mice. Human IBD specimens were stained for p65 and cleaved caspase-3. C57BL/6 mice with constitutively active IKKβ in IEC (Ikkβ(EE) IEC ), Ripk1 D138N/D138N knockin mice, and Ripk3 -/- mice were injected with TNF or lipopolysaccharide. Enteroids were also isolated from these mice and challenged with TNF with or without RIPK1 and RIPK3 inhibitors or butylated hydroxyanisole. Ripoptosome-mediated caspase-8 activation was assessed by immunoprecipitation. NF-κB activation in human IBD correlated with appearance of cleaved caspase-3. Congruently, unlike normal mouse IECs that are TNF-resistant, IECs in Ikkβ(EE) IEC mice and enteroids were susceptible to TNF-dependent apoptosis, which depended on the protein kinase function of RIPK1. Constitutively active IKKβ facilitated ripoptosome formation, a RIPK1 signaling complex that mediates caspase-8 activation by TNF. Butylated hydroxyanisole treatment and RIPK1 inhibitors attenuated TNF-induced and ripoptosome-mediated caspase-8 activation and IEC death in vitro and in vivo. Contrary to common expectations, chronic NF-κB activation induced intestinal crypt apoptosis after TNF stimulation, resulting in severe mucosal erosion. RIPK1 kinase inhibitors selectively inhibited TNF destructive properties while preserving its survival and proliferative properties, which do not require RIPK1 kinase activity. RIPK1 kinase inhibition could be a potential treatment for IBD

    RIPK1 activation mediates neuroinflammation and disease progression in multiple sclerosis

    Get PDF
    Receptor interacting protein kinase 1 (RIPK1) mediates cell death and inflammatory signaling and is increased in multiple sclerosis (MS) brain samples. Here, we investigate the role of glial RIPK1 kinase activity in mediating MS pathogenesis. We demonstrate RIPK1 levels correlate with MS disease progression. We find microglia are susceptible to RIPK1-mediated cell death and identify an inflammatory gene signature that may contribute to the neuroinflammatory milieu in MS patients. We uncover a distinct role for RIPK1 in astrocytes in regulating inflammatory signaling in the absence of cell death and confirm RIPK1-kinase-dependent regulation in human glia. Using a murine MS model, we show RIPK1 inhibition attenuates disease progression and suppresses deleterious signaling in astrocytes and microglia. Our results suggest RIPK1 kinase activation in microglia and astrocytes induces a detrimental neuroinflammatory program that contributes to the neurodegenerative environment in progressive MS
    corecore