212 research outputs found

    IDCS J1426.5+3508: The Most Massive Galaxy Cluster at z>1.5z > 1.5

    Full text link
    We present a deep (100 ks) Chandra observation of IDCS J1426.5+3508, a spectroscopically confirmed, infrared-selected galaxy cluster at z=1.75z = 1.75. This cluster is the most massive galaxy cluster currently known at z>1.5z > 1.5, based on existing Sunyaev-Zel'dovich (SZ) and gravitational lensing detections. We confirm this high mass via a variety of X-ray scaling relations, including TXT_X-M, fgf_g-M, YXY_X-M and LXL_X-M, finding a tight distribution of masses from these different methods, spanning M500_{500} = 2.3-3.3 ×1014\times 10^{14} M_{\odot}, with the low-scatter YXY_X-based mass M500,YX=2.60.5+1.5×1014M_{500,Y_X} = 2.6^{+1.5}_{-0.5} \times 10^{14} M_\odot. IDCS J1426.5+3508 is currently the only cluster at z>1.5z > 1.5 for which X-ray, SZ and gravitational lensing mass estimates exist, and these are in remarkably good agreement. We find a relatively tight distribution of the gas-to-total mass ratio, employing total masses from all of the aforementioned indicators, with values ranging from fgas,500f_{gas,500} = 0.087-0.12. We do not detect metals in the intracluster medium (ICM) of this system, placing a 2σ\sigma upper limit of Z(r<R500)<0.18ZZ(r < R_{500}) < 0.18 Z_{\odot}. This upper limit on the metallicity suggests that this system may still be in the process of enriching its ICM. The cluster has a dense, low-entropy core, offset by \sim30 kpc from the X-ray centroid, which makes it one of the few "cool core" clusters discovered at z>1z > 1, and the first known cool core cluster at z>1.2z > 1.2. The offset of this core from the large-scale centroid suggests that this cluster has had a relatively recent (\lesssim500 Myr) merger/interaction with another massive system.Comment: Minor changes to match accepted version, results unchanged; ApJ in pres

    Spectroscopic survey of faint planetary-nebula nuclei. I. Six new "O VI" central stars

    Full text link
    We report initial results from an ongoing spectroscopic survey of central stars of faint planetary nebulae (PNe), obtained with the Low-Resolution Spectrograph on the Hobby-Eberly Telescope. The six PN nuclei (PNNi) discussed here all have strong emission at the O VI 3811-3834 A doublet, indicative of very high temperatures. Five of them--the nuclei of Ou 2, Kn 61, Kn 15, Abell 72, and Kn 130--belong to the hydrogen-deficient PG 1159 class, showing a strong absorption feature of He II and C IV at 4650-4690 A. Based on exploratory comparisons with synthetic model-atmosphere spectra, and the presence of Ne VIII emission lines, we estimate them to have effective temperatures of order 170,000 K. The central star of Kn 15 has a Wolf-Rayet-like spectrum, with strong and broad emission lines of He II, C IV, N V, and O V-VI. We classify it [WO2], but we note that the N V 4604-4620 A emission doublet is extremely strong, indicating a relatively high nitrogen abundance. Several of the emission lines in Kn 15 vary in equivalent width by factors as large as 1.5 among our four observations from 2019 to 2022, implying significant variations in the stellar mass-loss rate. We encourage spectroscopic monitoring. Follow-up high-time-resolution photometry of these stars would be of interest, given the large fraction of pulsating variables seen among PG 1159 and [WO] PNNi.Comment: Accepted by MNRA

    The Massive Distant Clusters of WISE Survey: The First Distant Galaxy Cluster Discovered by WISE

    Get PDF
    We present spectroscopic confirmation of a z=0.99 galaxy cluster discovered using data from the Wide-field Infrared Survey Explorer (WISE). This is the first z~1 cluster candidate from the Massive Distant Clusters of WISE Survey (MaDCoWS) to be confirmed. It was selected as an overdensity of probable z>~1 sources using a combination of WISE and SDSS-DR8 photometric catalogs. Deeper follow-up imaging data from Subaru and WIYN reveal the cluster to be a rich system of galaxies, and multi-object spectroscopic observations from Keck confirm five cluster members at z=0.99. The detection and confirmation of this cluster represents a first step towards constructing a uniformly-selected sample of distant, high-mass galaxy clusters over the full extragalactic sky using WISE data.Comment: 6 pages, 5 figures, ApJL Accepte

    Star Formation and AGN Activity in Galaxy Clusters from z=12z=1-2: a Multi-wavelength Analysis Featuring HerschelHerschel/PACS

    Full text link
    We present a detailed, multi-wavelength study of star formation (SF) and AGN activity in 11 near-infrared (IR) selected, spectroscopically confirmed, massive (1014M\gtrsim10^{14}\,\rm{M_{\odot}}) galaxy clusters at 1<z<1.751<z<1.75. Using new, deep HerschelHerschel/PACS imaging, we characterize the optical to far-IR spectral energy distributions (SEDs) for IR-luminous cluster galaxies, finding that they can, on average, be well described by field galaxy templates. Identification and decomposition of AGN through SED fittings allows us to include the contribution to cluster SF from AGN host galaxies. We quantify the star-forming fraction, dust-obscured SF rates (SFRs), and specific-SFRs for cluster galaxies as a function of cluster-centric radius and redshift. In good agreement with previous studies, we find that SF in cluster galaxies at z1.4z\gtrsim1.4 is largely consistent with field galaxies at similar epochs, indicating an era before significant quenching in the cluster cores (r<0.5r<0.5\,Mpc). This is followed by a transition to lower SF activity as environmental quenching dominates by z1z\sim1. Enhanced SFRs are found in lower mass (10.1<logM/M<10.810.1< \log \rm{M_{\star}}/\rm{M_{\odot}}<10.8) cluster galaxies. We find significant variation in SF from cluster-to-cluster within our uniformly selected sample, indicating that caution should be taken when evaluating individual clusters. We examine AGN in clusters from z=0.52z=0.5-2, finding an excess AGN fraction at z1z\gtrsim1, suggesting environmental triggering of AGN during this epoch. We argue that our results - a transition from field-like to quenched SF, enhanced SF in lower mass galaxies in the cluster cores, and excess AGN - are consistent with a co-evolution between SF and AGN in clusters and an increased merger rate in massive haloes at high redshift.Comment: 26 pages, 14 figures, 6 tables with appendix, accepted for publication in the Astrophysical Journa
    corecore