6 research outputs found

    ВлияниС космичСской Ρ€Π°Π΄ΠΈΠ°Ρ†ΠΈΠΈ Π½Π° Π·Π΄ΠΎΡ€ΠΎΠ²ΡŒΠ΅ космонавтов ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ Π·Π°Ρ‰ΠΈΡ‚Ρ‹ ΠΎΡ‚ Π½Π΅Π΅

    Get PDF
    Π’ Π΄Π°Π½Π½ΠΎΠΉ ΡΡ‚Π°Ρ‚ΡŒΠ΅ рассмотрСно влияниС космичСской ΠΏΠΎΠ³ΠΎΠ΄Ρ‹ Π½Π° Π·Π΄ΠΎΡ€ΠΎΠ²ΡŒΠ΅ астронавтов. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π°Π½Π°Π»ΠΈΠ· Π·Π°Ρ€ΡƒΠ±Π΅ΠΆΠ½ΠΎΠΉ ΠΈ отСчСствСнно Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹ ΠΎΠ± ΠΈΠΌΠ΅ΡŽΡ‰ΠΈΡ…ΡΡ Π΄Π°Π½Π½Ρ‹Ρ… ΠΎ способах ΠΌΠΎΠ½ΠΈΡ‚ΠΎΡ€ΠΈΠ½Π³Π° дозыкосмичСской Ρ€Π°Π΄ΠΈΠ°Ρ†ΠΈΠΈ Π½Π° ΠœΠ΅ΠΆΠ΄ΡƒΠ½Π°Ρ€ΠΎΠ΄Π½ΠΎΠΉ космичСской станции(МКБ). Π˜Π·ΡƒΡ‡Π΅Π½Ρ‹ ΠΈΠΌΠ΅ΡŽΡ‰ΠΈΠ΅ΡΡ способызащиты космичСских станций ΠΎΡ‚ Ρ€Π°Π΄ΠΈΠ°Ρ†ΠΈΠΈ.In this article, space radiation's impact on the health of astronauts was considered. The materials of studywere Russian and foreign works about measuring methods of space radiation on International Space Station (ISS).The available way of ISS's space radiation protection

    To the question of green engineering

    Get PDF

    Studying radiation hardness of a cadmium tungstate crystal based radiation detector

    Get PDF
    The given article considers radiation hardness of an X-ray detector used in production of non-destructive testing instruments and inspection systems. In the course of research, experiments were carried out to estimate radiation hardness of a detector based on cadmium tungstate crystal and its structural components individually. The article describes a layout of an experimental facility that was used for measurements of radiation hardness. The radiation dose dependence of the photodiode current is presented, when it is excited by a light flux of a scintillator or by an external light source. Experiments were carried out to estimate radiation hardness of two types of optical glue used in detector production; they are based on silicon rubber and epoxy. With the help of a spectrophotometer and cobalt gun, each of the glue samples was measured for a relative light transmission factor with different wavelengths, depending on the radiation dose. The obtained data are presented in a comprehensive analysis of the results. It was determined, which of the glue samples is most suitable for production of detectors working under exposure to strong radiation

    ΠŸΡ€ΠΎΠ΅ΠΊΡ‚ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΠ»Π°Π½Π°Ρ€Π½ΠΎΠ³ΠΎ Ρ„Π΅Ρ€Ρ€ΠΎΠ·ΠΎΠ½Π΄ΠΎΠ²ΠΎΠ³ΠΎ Π΄Π°Ρ‚Ρ‡ΠΈΠΊΠ° ΠΏΠΎ Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΏΠ΅Ρ‡Π°Ρ‚Π½Ρ‹Ρ… ΠΏΠ»Π°Ρ‚

    Get PDF
    The development of novel methods, scientific devices and means for measuring magnetic fields generated by ultra-low current is among promising directions in the development of medical equipment and instruments for geodetic surveys and space exploration. The present work is to develop a small sensor capable of detecting weak magnetic fields, which sources are biocurrents, radiation of far space objects and slight fluctuations of the geomagnetic field. Scientists estimate the strength of such magnetic fields as deciles of nanotesla. The key requirements for the sensors of ultra-low magnetic field are: resolution, noise level in the measurement channel, temperature stability, linearity and repeatability of the characteristics from one produced item to another. The aforementioned characteristics can be achieved by using planar technologies and microelectromechanical systems (MEMS) in such advanced sensors. The work describes a complete R&D cycle, from creating the computer model of the sensor under study to manufacturing of a working prototype. To assess the effect of the geometry and material properties, the Jiles–Atherton model is implemented which, unlike the majority of the models used, allows considering the non-linearity of the core, its hysteresis properties and influence of residual magnetization. The dimensions of the developed sensor are 40Γ—20Γ—5 mm, while the technology allows its further diminishment. The sensor has demonstrated the linearity of its properties in the range of magnetic field strength from 0.1 nT to 50 ΞΌT for a rms current of excitation of 1.25 mA at a frequency of 30 kHz. The average sensitivity for the second harmonic is 54 ΞΌV/nT

    ΠŸΡ€ΠΎΠ΅ΠΊΡ‚ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΠ»Π°Π½Π°Ρ€Π½ΠΎΠ³ΠΎ Ρ„Π΅Ρ€Ρ€ΠΎΠ·ΠΎΠ½Π΄ΠΎΠ²ΠΎΠ³ΠΎ Π΄Π°Ρ‚Ρ‡ΠΈΠΊΠ° ΠΏΠΎ Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΏΠ΅Ρ‡Π°Ρ‚Π½Ρ‹Ρ… ΠΏΠ»Π°Ρ‚

    Get PDF
    The development of novel methods, scientific devices and means for measuring magnetic fields generated by ultra-low current is among promising directions in the development of medical equipment and instruments for geodetic surveys and space exploration. The present work is to develop a small sensor capable of detecting weak magnetic fields, which sources are biocurrents, radiation of far space objects and slight fluctuations of the geomagnetic field. Scientists estimate the strength of such magnetic fields as deciles of nanotesla.Β The key requirements for the sensors of ultra-low magnetic field are: resolution, noise level in the measurement channel, temperature stability, linearity and repeatability of the characteristics from one produced item to another. The aforementioned characteristics can be achieved by using planar technologies and microelectromechanical systems (MEMS) in such advanced sensors.The work describes a complete R&D cycle, from creating the computer model of the sensor under study to manufacturing of a working prototype. To assess the effect of the geometry and material properties, the Jiles–Atherton model is implemented which, unlike the majority of the models used, allows considering the non-linearity of the core, its hysteresis properties and influence of residual magnetization.The dimensions of the developed sensor are 40Γ—20Γ—5 mm, while the technology allows its further diminishment. The sensor has demonstrated the linearity of its properties in the range of magnetic field strength from 0.1 nT to 50 Β΅T for a rms current of excitation of 1.25 mA at a frequency of 30 kHz. The average sensitivity for the second harmonic is 54 Β΅V/nT.Π Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° Π½ΠΎΠ²Ρ‹Ρ… ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ², Π½Π°ΡƒΡ‡Π½Ρ‹Ρ… ΠΏΡ€ΠΈΠ±ΠΎΡ€ΠΎΠ² ΠΈ срСдств для измСрСния ΠΌΠ°Π³Π½ΠΈΡ‚Π½Ρ‹Ρ… ΠΏΠΎΠ»Π΅ΠΉ, создаваСмых свСрхслабыми Ρ‚ΠΎΠΊΠ°ΠΌΠΈ, являСтся ΠΎΠ΄Π½ΠΈΠΌ ΠΈΠ· пСрспСктивных Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΉ Π² Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠΈ мСдицинской Ρ‚Π΅Ρ…Π½ΠΈΠΊΠΈ, гСодСзичСских ΠΈ космичСских исслСдований. ЦСлью Π΄Π°Π½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹ являлась Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° ΠΌΠ°Π»ΠΎΠ³Π°Π±Π°Ρ€ΠΈΡ‚Π½ΠΎΠ³ΠΎ Π΄Π°Ρ‚Ρ‡ΠΈΠΊΠ°, способного Π΄Π΅Ρ‚Π΅ΠΊΡ‚ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ слабыС ΠΌΠ°Π³Π½ΠΈΡ‚Π½Ρ‹Π΅ поля, источниками ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ Π±ΠΈΠΎΡ‚ΠΎΠΊΠΈ, излучСния Π΄Π°Π»Ρ‘ΠΊΠΈΡ… космичСских ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ΠΎΠ² ΠΈ слабыС Ρ„Π»ΡƒΠΊΡ‚ΡƒΠ°Ρ†ΠΈΠΈ ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠ³ΠΎ поля Π·Π΅ΠΌΠ»ΠΈ. Π£Ρ‡Ρ‘Π½Ρ‹Π΅ ΠΎΡ†Π΅Π½ΠΈΠ²Π°ΡŽΡ‚ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ Ρ‚Π°ΠΊΠΈΡ… ΠΌΠ°Π³Π½ΠΈΡ‚Π½Ρ‹Ρ… ΠΏΠΎΠ»Π΅ΠΉ Π² дСсятыС Π΄ΠΎΠ»ΠΈ нанотСсла.Β Π‘Ρ€Π΅Π΄ΠΈ ΠΊΠ»ΡŽΡ‡Π΅Π²Ρ‹Ρ… Ρ‚Ρ€Π΅Π±ΠΎΠ²Π°Π½ΠΈΠΉ ΠΊ Π΄Π°Ρ‚Ρ‡ΠΈΠΊΠ°ΠΌ свСрхслабого ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠ³ΠΎ поля ΠΌΠΎΠΆΠ½ΠΎ отнСсти Ρ€Π°Π·Ρ€Π΅ΡˆΠ°ΡŽΡ‰ΡƒΡŽ ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΡŒ, ΡƒΡ€ΠΎΠ²Π΅Π½ΡŒ ΡˆΡƒΠΌΠΎΠ² Π² ΠΈΠ·ΠΌΠ΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΌ ΠΊΠ°Π½Π°Π»Π΅, Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π½ΡƒΡŽ ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΡŒ, Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΡΡ‚ΡŒ ΠΈ ΠΏΠΎΠ²Ρ‚ΠΎΡ€ΡΠ΅ΠΌΠΎΡΡ‚ΡŒ характСристик ΠΎΡ‚ издСлия ΠΊ издСлию. ΠŸΡ€Π΅Π΄Π»Π°Π³Π°Π΅Ρ‚ΡΡ Π΄ΠΎΠ±ΠΈΡ‚ΡŒΡΡ этих характСристик ΠΏΡƒΡ‚Ρ‘ΠΌ примСнСния ΠΏΠ»Π°Π½Π°Ρ€Π½Ρ‹Ρ… Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΉ ΠΈ микроэлСктромСханичСских систСм ΠΏΡ€ΠΈ ΠΈΠ·Π³ΠΎΡ‚ΠΎΠ²Π»Π΅Π½ΠΈΠΈ соврСмСнных Π΄Π°Ρ‚Ρ‡ΠΈΠΊΠΎΠ².Π’ Ρ€Π°Π±ΠΎΡ‚Π΅ описан ΠΏΠΎΠ»Π½Ρ‹ΠΉ Ρ†ΠΈΠΊΠ» исслСдования, ΠΎΡ‚ создания ΠΊΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€Π½ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ исслСдуСмого Π΄Π°Ρ‚Ρ‡ΠΈΠΊΠ° Π΄ΠΎ изготовлСния Ρ€Π°Π±ΠΎΡ‡Π΅Π³ΠΎ ΠΏΡ€ΠΎΡ‚ΠΎΡ‚ΠΈΠΏΠ°. Для ΠΎΡ†Π΅Π½ΠΊΠΈ влияния гСомСтричСских ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² ΠΈ влияния свойств ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π° использована модСль ДТилса‒АтСртона, которая, Π² ΠΎΡ‚Π»ΠΈΡ‡ΠΈΠ΅ ΠΎΡ‚ Π±ΠΎΠ»ΡŒΡˆΠΈΠ½ΡΡ‚Π²Π° ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡ‹Ρ… ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ, позволяСт ΡƒΡ‡Π΅ΡΡ‚ΡŒ Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΡΡ‚ΡŒ сСрдСчника, Π΅Π³ΠΎ гистСрСзисныС свойства ΠΈ влияниС остаточной намагничСнности.Π“Π°Π±Π°Ρ€ΠΈΡ‚Ρ‹ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½ΠΎΠ³ΠΎ Π΄Π°Ρ‚Ρ‡ΠΈΠΊΠ° ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‚ 40Γ—20Γ—5 ΠΌΠΌ ΠΈ тСхничСски Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ Π΅Π³ΠΎ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΠ΅. Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½Ρ‹ΠΉ Π΄Π°Ρ‚Ρ‡ΠΈΠΊ продСмонстрировал Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΡΡ‚ΡŒ характСристик Π² Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ ΠΎΡ‚ 0,1 Π½Π’Π» Π΄ΠΎ 50 ΠΌΠΊΠ’Π» ΠΏΡ€ΠΈ срСднСквадратичСском Ρ‚ΠΎΠΊΠ΅ возбуТдСния 1,25 мА Π½Π° частотС 30 ΠΊΠ“Ρ†. УсрСднённый коэффициСнт прСобразования ΠΏΠΎ Π²Ρ‚ΠΎΡ€ΠΎΠΉ Π³Π°Ρ€ΠΌΠΎΠ½ΠΈΠΊΠ΅ составляСт 54 ΠΌΠΊΠ’/Π½Π’Π»
    corecore