127 research outputs found
Universal distribution of magnetic anisotropy of impurities in ordered and disordered nano-grains
We examine the distribution of the magnetic anisotropy (MA) experienced by a
magnetic impurity embedded in a metallic nano-grain. As an example of a generic
magnetic impurity with partially filled -shell, we study the case of
impurities imbedded into ordered and disordered Au nano-grains, described in
terms of a realistic band structure. Confinement of the electrons induces a
magnetic anisotropy that is large, and can be characterized by 5 real
parameters, coupling to the quadrupolar moments of the spin. In ordered
(spherical) nano-grains, these parameters exhibit symmetrical structures and
reflect the symmetry of the underlying lattice, while for disordered grains
they are randomly distributed and, - for stronger disorder, - their
distribution is found to be characterized by random matrix theory. As a result,
the probability of having small magnetic anisotropies is suppressed below
a characteristic scale , which we predict to scale with the number of
atoms as . This gives rise to anomalies in the
specific heat and the susceptibility at temperatures and
produces distinct structures in the magnetic excitation spectrum of the
clusters, that should be possible to detect experimentally
Failure of mean-field approach in out-of-equilibrium Anderson model
To explore the limitations of the mean field approximation, frequently used
in \textit{ab initio} molecular electronics calculations, we study an
out-of-equilibrium Anderson impurity model in a scattering formalism. We find
regions in the parameter space where both magnetic and non-magnetic solutions
are stable. We also observe a hysteresis in the non-equilibrium magnetization
and current as a function of the applied bias voltage. The mean field method
also predicts incorrectly local moment formation for large biases and a spin
polarized current, and unphysical kinks appear in various physical quantities.
The mean field approximation thus fails in every region where it predicts local
moment formation.Comment: 5 pages, 5 figure
Low energy properties of M-state tunneling systems in metals: New candidates for non-Fermi-liquid systems
We construct a generalized multiplicative renormalization group
transformation to study the low energy dynamics of a heavy particle tunneling
among different positions and interacting with independent conduction
electron channels. Using a -expansion we show that this M-level scales
towards a fixed point equivalent to the channel
Coqblin-Schrieffer model. Solving numerically the scaling equations we find
that a realistic M-level system scales close to this fixed point (FP) and its
Kondo temperature is in the experimentally observable range .Comment: 11 Latex pages, to appear in Phys. Rev. Lett, Figures available from
the author by reques
Orbital Kondo behavior from dynamical structural defects
The interaction between an atom moving in a model double-well potential and
the conduction electrons is treated using renormalization group methods in
next-to-leading logarithmic order. A large number of excited states is taken
into account and the Kondo temperature is computed as a function of
barrier parameters. We find that for special parameters can be close to
and it can be of the same order of magnitude as the renormalized
splitting . However, in the perturbative regime we always find that
T_K \alt \Delta with a T_K \alt 1 {\rm K} [Aleiner {\em et al.}, Phys.
Rev. Lett. {\bf 86}, 2629 (2001)]. We also find that remains
unrenormalized at energies above the Debye frequency, .Comment: 9 pages, 9 figures, RevTe
SU(4) Fermi Liquid State and Spin Filtering in a Double Quantum Dot System
We study a symmetrical double quantum dot (DD) system with strong capacitive
inter-dot coupling using renormalization group methods. The dots are attached
to separate leads, and there can be a weak tunneling between them. In the
regime where there is a single electron on the DD the low-energy behavior is
characterized by an SU(4)-symmetric Fermi liquid theory with entangled spin and
charge Kondo correlations and a phase shift . Application of an external
magnetic field gives rise to a large magneto-conductance and a crossover to a
purely charge Kondo state in the charge sector with SU(2) symmetry. In a four
lead setup we find perfectly spin polarized transmission.Comment: 4 pages, 4 figures, ReVTe
Smearing of charge fluctuations in a grain by spin-flip assisted tunneling
We investigate the charge fluctuations of a grain (large dot) coupled to a
lead via a small quantum dot in the Kondo regime. We show that the strong
entanglement of charge and spin flips in this setup can result in a stable
SU(4) Kondo fixed point, which considerably smears out the Coulomb staircase
behavior already in the weak tunneling limit. This behavior is robust enough to
be experimentally observable.Comment: 4 pages, 1 figure, final version for PRB Rapid Com
Non-equilibrium transport theory of the singlet-triplet transition: perturbative approach
We use a simple iterative perturbation theory to study the singlet-triplet
(ST) transition in lateral and vertical quantum dots, modeled by the
non-equilibrium two-level Anderson model. To a great surprise, the region of
stable perturbation theory extends to relatively strong interactions, and this
simple approach is able to reproduce all experimentally-observed features of
the ST transition, including the formation of a dip in the differential
conductance of a lateral dot indicative of the two-stage Kondo effect, or the
maximum in the linear conductance around the transition point. Choosing the
right starting point to the perturbation theory is, however, crucial to obtain
reliable and meaningful results
Kondo temperature of SU(4) symmetric quantum dots
A path integral approach is used to derive a closed analytical expression for
the Kondo temperature of the SU(4) symmetrical Anderson model. In contrast to
the SU(2) case, the prefactor of the Kondo temperature is found to display a
peculiar orbital-energy (gate voltage) dependence, reflecting the presence of
various SU(4) mixed valence fixed points. Our analytical expressions are
tested against and confirmed by numerical renormalization group computations
Quantum Noise Measurement of a Carbon Nanotube Quantum Dot in the Kondo Regime
The current emission noise of a carbon nanotube quantum dot in the Kondo
regime is measured at frequencies of the order or higher than the
frequency associated with the Kondo effect , with the Kondo
temperature. The carbon nanotube is coupled via an on-chip resonant circuit to
a quantum noise detector, a superconductor-insulator-superconductor junction.
We find for a Kondo effect related singularity at a
voltage bias , and a strong reduction of this singularity
for , in good agreement with theory. Our experiment
constitutes a new original tool for the investigation of the non-equilibrium
dynamics of many-body phenomena in nanoscale devices.Comment: 6 pages, 4 figure
- …