15 research outputs found

    Building a Reusable and Extensible Automatic Compiler Infrastructure for Reconfigurable Devices

    Full text link
    Multi-Level Intermediate Representation (MLIR) is gaining increasing attention in reconfigurable hardware communities due to its capability to represent various abstract levels for software compilers. This project aims to be the first to provide an end-to-end framework that leverages open-source, cross-platform compilation technology to generate MLIR from SYCL. Additionally, it aims to explore a lowering pipeline that converts MLIR to RTL using open-source hardware intermediate representation (IR) and compilers. Furthermore, it aims to couple the generated hardware module with the host CPU using vendor-specific crossbars. Our preliminary results demonstrated the feasibility of lowering customized MLIR to RTL, thus paving the way for an end-to-end compilation.Comment: 2023 33rd International Conference on Field-Programmable Logic and Applications (FPL

    Quantification of blood flow index in diffuse correlation spectroscopy using a robust deep learning method

    Get PDF
    Significance: Diffuse correlation spectroscopy (DCS) is a powerful, non-invasive optical technique for measuring blood flow. Traditionally the blood flow index (BFi) is derived through nonlinear least-square fitting the measured intensity autocorrelation function (ACF). However, the fitting process is computationally intensive, susceptible to measurement noise, and easily influenced by optical properties (absorption coefficient Ī¼_a and reduced scattering coefficient Ī¼_s^') and scalp and skull thicknesses. Aim: We aim to develop a data-driven method that enables rapid and robust analysis of multiple-scattered lightā€™s temporal ACFs. Moreover, the proposed method can be applied to a range of source-detector distances instead of being limited to a specific source-detector distance. Approach: We present a deep learning architecture with one-dimensional convolution neural networks, called DCS neural networks (DCS-NET), for BFi and coherent factor (Ī²) estimation. This DCS-NET was performed using simulated DCS data based on a three-layer brain model. We quantified the impact from physiologically relevant optical property variations, layer thicknesses, realistic noise levels, and multiple source-detector distances (5, 10, 15, 20, 25, and 30 mm) on BFi and Ī² estimations among DCS-NET, semi-infinite, and three-layer fitting models. Results: DCS-NET shows a much faster analysis speed, around 17,000-fold and 32-fold faster than the traditional three-layer and semi-infinite models, respectively. It offers higher intrinsic sensitivity to deep tissues compared with fitting methods. DCS-NET shows excellent anti-noise features and is less sensitive to variations of Ī¼_a and Ī¼_s^' at a source-detector separation of 30 mm. Also, we have demonstrated that relative BFi (rBFi) can be extracted by DCS-NET with a much lower error of 8.35%. By contrast, the semi-infinite and three-layer fitting models result in significant errors in rBFi of 43.76% and 19.66%, respectively. Conclusions: DCS-NET can robustly quantify blood flow measurements at considerable source-detector distances, corresponding to much deeper biological tissues. It has excellent potential for hardware implementation, promising continuous real-time blood flow measurements

    Multi-channel high-linearity time-to-digital converters in 20 nm and 28 nm FPGAs for LiDAR applications

    Get PDF
    This paper proposes a new calibration method, the mixed-binning method, to pursue a TDC with high linearity in field-programmable gate arrays (FPGAs). This method can reduce the nonlinearity caused by large clock skews in FPGAs efficiently. Therefore, a wide dynamic range tapped delay line (TDL) TDC has been developed with maintained linearity. We evaluated this method in Xilinx 20nm UltraScale FPGAs and Xilinx 28nm Virtex-7 FPGAs. Results conduct that this method is perfectly suitable for driverless vehicle applications which require high linearity with an acceptable resolution. The proposed method also has great potentials for multi-channel applications, due to the low logic resource consumption. For a quick proof-of-concept demonstration, an 8-channel solution has also been implemented. It can be further extended to a 64-channel version soon

    Spatial resolution improved fluorescence lifetime imaging via deep learning

    Get PDF
    We present a deep learning approach to obtain high-resolution (HR) fluorescence lifetime images from low-resolution (LR) images acquired from Fluorescence Lifetime IMaging (FLIM) systems. We first proposed a theoretical method for training neural networks to generate massive semi-synthetic FLIM data with various cellular morphologies, a sizeable dynamic lifetime range, and complex decay components. We then developed a degrading model to obtain LR-HR pairs and created a hybrid neural network, the Spatial Resolution Improved FLIM net (SRI-FLIMnet), to simultaneously estimate fluorescence lifetimes and realize the nonlinear transformation from LR to HR images. The evaluative results demonstrate SRI-FLIMnetā€™s superior performance in reconstructing spatial information from limited pixel resolution. We also verified SRI-FLIMnet using experimental images of bacterial infected mouse raw macrophage cells. Results show that the proposed data generation method and SRIFLIMnet efficiently achieve superior spatial resolution for FLIM applications. Our study provides a solution for fast obtaining HR FLIM images

    CompactĀ andĀ robustĀ deepĀ learningĀ architecture forĀ fluorescenceĀ lifetimeĀ imagingĀ andĀ FPGA implementation

    Get PDF
    This paper reports a bespoke adder-based deep learning network for time-domain fluorescence lifetime imaging (FLIM). By leveraging the l1-norm extraction method, we propose a 1-D Fluorescence Lifetime AdderNet (FLAN) without multiplication-based convolutions to reduce the computational complexity. Further, we compressed fluorescence decays in temporal dimension using a log-scale merging technique to discard redundant temporal information derived as log-scaling FLAN (FLAN+LS). FLAN+LS achieves 0.11 and 0.23 compression ratios compared with FLAN and a conventional 1-D convolutional neural network (1-D CNN) while maintaining high accuracy in retrieving lifetimes. We extensively evaluated FLAN and FLAN+LS using synthetic and real data. A traditional fitting method and other non-fitting, high-accuracy algorithms were compared with our networks for synthetic data. Our networks attained a minor reconstruction error in different photon-count scenarios. For real data, we used fluorescent beads' data acquired by a confocal microscope to validate the effectiveness of real fluorophores, and our networks can differentiate beads with different lifetimes. Additionally, we implemented the network architecture on a field-programmable gate array (FPGA) with a post-quantization technique to shorten the bit-width, thereby improving computing efficiency. FLAN+LS on hardware achieves the highest computing efficiency compared to 1-D CNN and FLAN. We also discussed the applicability of our network and hardware architecture for other time-resolved biomedical applications using photon-efficient, time-resolved sensor

    Fast analysis of timeā€domain fluorescence lifetime imaging via extreme learning machine

    Get PDF
    We present a fast and accurate analytical method for fluorescence lifetime imaging microscopy (FLIM), using the extreme learning machine (ELM). We used extensive metrics to evaluate ELM and existing algorithms. First, we compared these algorithms using synthetic datasets. The results indicate that ELM can obtain higher fidelity, even in low-photon conditions. Afterwards, we used ELM to retrieve lifetime components from human prostate cancer cells loaded with gold nanosensors, showing that ELM also outperforms the iterative fitting and non-fitting algorithms. By comparing ELM with a computational efficient neural network, ELM achieves comparable accuracy with less training and inference time. As there is no back-propagation process for ELM during the training phase, the training speed is much higher than existing neural network approaches. The proposed strategy is promising for edge computing with online training

    Dynamic fluorescence lifetime sensing with CMOS single-photon avalanche diode arrays and deep learning processors

    Get PDF
    Measuring fluorescence lifetimes of fast-moving cells or particles have broad applications in biomedical sciences. This paper presents a dynamic fluorescence lifetime sensing (DFLS) system based on the time-correlated single-photon counting (TCSPC) principle. It integrates a CMOS 192 Ɨ 128 single-photon avalanche diode (SPAD) array, offering an enormous photon-counting throughput without pile-up effects. We also proposed a quantized convolutional neural network (QCNN) algorithm and designed a field-programmable gate array embedded processor for fluorescence lifetime determinations. The processor uses a simple architecture, showing unparallel advantages in accuracy, analysis speed, and power consumption. It can resolve fluorescence lifetimes against disturbing noise. We evaluated the DFLS system using fluorescence dyes and fluorophore-tagged microspheres. The system can effectively measure fluorescence lifetimes within a single exposure period of the SPAD sensor, paving the way for portable time-resolved devices and shows potential in various applications

    Hardware inspired neural network for efficient time-resolved biomedical imaging

    Get PDF
    Convolutional neural networks (CNN) have revealed exceptional performance for fluorescence lifetime imaging (FLIM). However, redundant parameters and complicated topologies make it challenging to implement such networks on embedded hardware to achieve real-time processing. We report a lightweight, quantized neural architecture that can offer fast FLIM imaging. The forward-propagation is significantly simplified by replacing matrix multiplications in each convolution layer with additions and data quantization using a low bit-width. We first used synthetic 3-D lifetime data with given lifetime ranges and photon counts to assure correct average lifetimes can be obtained. Afterwards, human prostatic cancer cells incubated with gold nanoprobes were utilized to validate the feasibility of the network for real-world data. The quantized network yielded a 37.8% compression ratio without performance degradation. Clinical relevance - This neural network can be applied to diagnose cancer early based on fluorescence lifetime in a non-invasive way. This approach brings high accuracy and accelerates diagnostic processes for clinicians who are not experts in biomedical signal processin

    Simple and robust deep learning approach for fast fluorescence lifetime imaging

    Get PDF
    Fluorescence lifetime imaging (FLIM) is a powerful tool that provides unique quantitative information for biomedical research. In this study, we propose a multi-layer-perceptron-based mixer (MLP-Mixer) deep learning (DL) algorithm named FLIM-MLP-Mixer for fast and robust FLIM analysis. The FLIM-MLP-Mixer has a simple network architecture yet a powerful learning ability from data. Compared with the traditional fitting and previously reported DL methods, the FLIM-MLP-Mixer shows superior performance in terms of accuracy and calculation speed, which has been validated using both synthetic and experimental data. All results indicate that our proposed method is well suited for accurately estimating lifetime parameters from measured fluorescence histograms, and it has great potential in various real-time FLIM applications

    Smart wide-field fluorescence lifetime imaging system with CMOS single-photon avalanche diode arrays

    Get PDF
    Wide-field fluorescence lifetime imaging (FLIM) is a promising technique for biomedical and clinic applications. Integrating with CMOS single-photon avalanche diode (SPAD) sensor arrays can lead to cheaper and portable real-time FLIM systems. However, the FLIM data obtained by such sensor systems often have sophisticated noise features. There is still a lack of fast tools to recover lifetime parameters from highly noise-corrupted fluorescence signals efficiently. This paper proposes a smart wide-field FLIM system containing a 192Ɨ128 COMS SPAD sensor and a field-programmable gate array (FPGA) embedded deep learning (DL) FLIM processor. The processor adopts a hardware-friendly and light-weighted neural network for fluorescence lifetime analysis, showing the advantages of high accuracy against noise, fast speed, and low power consumption. Experimental results demonstrate the proposed system's superior and robust performances, promising for many FLIM applications such as FLIM-guided clinical surgeries, cancer diagnosis, and biomedical imagin
    corecore