
Abstract—Wide-field fluorescence lifetime imaging (FLIM) is 
a promising technique for biomedical and clinic applications. 
Integrating with CMOS single-photon avalanche diode (SPAD) 
sensor arrays can lead to cheaper and portable real-time FLIM 
systems. However, the FLIM data obtained by such sensor 
systems often have sophisticated noise features. There is still a 
lack of fast tools to efficiently recover lifetime parameters from 
highly noise-corrupted fluorescence signals. This paper proposes 
a smart wide-field FLIM system containing a 192 × 128 COMS 
SPAD sensor, and a field-programmable gate array (FPGA) 
embedded deep learning (DL) FLIM processor. The processor 
adopts a hardware-friendly and light-weighted neural network 
for fluorescence lifetime analysis, showing the advantages of 
high accuracy against noise, fast speed, and low power 
consumption. Experimental results demonstrate the proposed 
system's superior and robust performances, promising for many 
FLIM applications such as FLIM-guided clinical surgeries, 
cancer diagnosis, and biomedical imaging. 

I. INTRODUCTION

Fluorescence lifetime imaging microscopy (FLIM) is a 
widely applied imaging technique for biology, chemistry, and 
pharmacy applications. It provides a unique way to 
quantitively investigate cellular metabolisms, molecular 
biophysical microenvironments (including pH, Ca2+, O2), 
protein-protein interactions, and Förster resonance energy 
transfer (FRET) behaviors [1,2]. With the ability to monitor 
various molecular processes in living cells and tissues, FLIM 
is promising for disease diagnosis, drug delivery, and drug 
developments [3-5].  

Conventional laser-scanning FLIM systems for cell 
imaging usually use discrete components, including an optical 
module, a scanning system, photomultipliers (PMT), a time-
correlated single-photon counting (TCSPC) card, and a PC, 
which are expensive, bulky, and only suitable for laboratory 
environments. PMTs are fragile and need a high voltage 
supply (>1KV). Meanwhile, FLIM data is usually analyzed by 

iterative curve-fitting software tools based on the least square 
fitting (LSF) method, maximum likelihood estimation (MLE), 
or Bayesian methods. These methods are usually 
computationally intensive and, therefore, slow [6]. 

A single-photon avalanche diode (SPAD) is a p-n junction 
working at the Geiger mode, offering a sensitivity down to the 
single-photon level with excellent timing precision [7, 8]. 
Thanks to rapid advances in complementary metal-oxide-
semiconductor (CMOS) manufacturing technologies, various 
CMOS SPAD array sensors have been developed for cheap, 
portable, and fast time-resolved imaging systems [9 - 12]. 
CMOS SPAD sensors are integrated with front-end electronics, 
timing electronics, and other functional blocks in a system-on-
chip. Therefore, CMOS SPAD sensors show unparalleled 
advantages such as a small footprint, lower power 
consumption, and low cost. Moreover, CMOS SPAD array 
sensors offer parallel detection capacity, suitable for fast wide-
field FLIM imaging. Compared with laser-scanning FLIM, 
wide-field FLIM techniques are simpler and faster.  

However, SPAD array devices can be noisier than 
traditional single-channel SPAD or PMT sensors [7], even 
though new low-noise sensor technologies have been 
introduced [12 - 14]. Apart from dark count and shot noise, a 
bigger sensor array also has clock switching noise, ground 
bounce noise, mismatch problems (sensor gain), internal clock 
tree routings, and front-end circuits [12]. FLIM images 
obtained by SPAD array sensors can be therefore distorted. In 
addition, wide-field FLIM systems usually have sophisticated 
noise features because the signals are vulnerable to the 
scattering light from the out-of-focus plane and pixel crosstalk. 
Existing FLIM analysis methods cannot tackle this problem 
robustly. This study reports an intelligent wide-field SPAD 
FLIM system with an embedded deep learning processor on an 
FPGA board. DL techniques provide an alternative route to 
fast and high-precision FLIM analysis [15 -18]. In this work, 
a light-weighted neural network (NN) algorithm was designed 
and implemented on the DL processor for fast and accurate 
analysis of noise-contaminated FLIM data. The proposed 
system shows superior and robust analysis performances 
without additional software. Our study can facilitate the 
development of portable and real-time wide-field FLIM 
systems and related applications. 

II. SYSTEM DESIGN AND EVALUATION

A. System Design
Figure 1 shows the overall view of the wide-field FLIM

system. It comprises three subsystems: the optics, the SPAD 
system, and the DL processor. The optics subsystem is shown 
in Fig. 1 (a). The 485 nm pulsed diode laser (DD-485L Delta 
Diode, HORIBA Scientific) with a pulse width of 80 ps and a 
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repletion rate of 100 MHz illuminated the specimen slide 
through a filter (F), a dichroism beam splitter (DBS), and a 
microscope objective lens (MOL). The fluorescent photons 
emitted by the specimen passed through the DBS and the filter 
and were focused by a focus lens (FL). The SPAD system was 
packaged into a QuantiCam camera module and mounted on 
the microscope system to collect the signal on the focus plane 
of the FL. The laser driver generated the synchronized signal 
to drive the laser and provided a reference signal for timing the 
detected photon in the SPAD system. Figure 1(b) shows the 
detailed configuration of the SPAD system. The SPAD array 
fabricated in STMicroelectronics’ 40 nm CMOS process was 
integrated into one 3.15 mm × 2.37 mm chip. This sensor chip 
comprises a 196×128 SPAD array, 64 parallel-to-serial 
converters, and corresponding addressing circuitry. This 
SPAD chip's detailed design and fabrication were reported in 
[12]. In our experiment, each pixel's time-to-digital converter 
(TDC) resolution was set to 39 ps. The SPAD chip was 
controlled by an Opal Kelly FPGA board (XEM6310-LX150, 
Xilinx) that contains a Xilinx Spartan 6 FPGA chip and a 
USB3 serial link. A custom printed circuit board (PCB) 
provides an interface for the SPAD chip and FPGA board. It 
also provides an input interface for the synchronized signal 
from the laser source. Fig.1(c) shows the hardware block 
diagram of the DL processor with an NN algorithm for FLIM 
data analysis. The DL processor was developed on the ZYNQ 
7020 (XC7Z020-CLG484-1, Xilinx, USA) board for the 
proof-of-concept study. The FPGA device contains the 
programmable logic (PL) blocks and the processing system 
(PS). The NN architecture is implemented in PL blocks on 
multiple processing elements (PEs) for highly parallel 
computing. The PS with two ARM cores configures status 
registers of the Direct-Memory-Access (DMA) controller and 
peripherals. The AXI-Stream and AXI-LITE buses are for data 
transfer and configurations of pre-trained NN parameters, 
respectively. Raw FLIM data from the SPAD sensor will be 

fetched through I/Os and processed by PEs. The footprint of 
the whole SPAD system with DL FLIM processor has a 
compact size with only a half of A4 paper. 

B. Neural network algorithm 
One-dimensional convolutional blocks were applied to 

construct the NN backbone to design a hardware friendly NN 
algorithm with high throughput, low latency, and low energy 
consumption [17].  Each convolutional block contains three 
subsequential layers: a 1-D convolutional layer, a batch 
normalization (BN) layer, and a rectifier linear unit (ReLU) 
activation layer. The NN’s topological structure is shown in 
Fig. 2(a). Our study focuses on bi-exponential decays, and the 
lifetime parameters (including the shorter lifetime τ1, the 
longer lifetime τ2, and the fraction ratio α) will be estimated. 
The first two layers with large kernel sizes and strides are for 
feature extraction, and three branches reconstruct lifetime 
parameters. Each branch contains three pointwise 
convolutional blocks for down pooling the information and 
obtaining final parameters.  

The designed NN was trained by simulated synthetic data 
since both the fluorescence decay and noise mathematical 
models are well developed. The theoretical bi-exponential 
fluorescence decays measured by a FLIM system can be 
described as: 

y(𝑡) = 𝑁𝑇 ∙ 𝐼(𝑡) ∗ [𝛼𝑒−𝑡/𝜏1 + (1 − 𝛼)𝑒−𝑡/𝜏2],  (1) 

where I(t) is the FLIM system's instrument response function 
(IRF). The asterisk (*) refers to a convolution operator. The 
integral ∫ 𝐼(𝑡) ∗ [𝛼𝑒−𝑡/𝜏1 + (1 − 𝛼)𝑒−𝑡/𝜏2] 𝑑𝑡 is normalized 

 
Fig. 1. Overview of the smart wide-field FLIM system. (a) The optics 
for fluorescence signal excitation and collection. (b) The block diagram 
of SPAD system with DL processor (upper panel) and top view of 
experimental devices (low panel). (c) The hardware block diagram of the 
FPGA-based DL processor. The insert shows the details of the 
processing element (PE). 

 
Fig. 2. (a) The architecture of the NN. The dash boxes indicate the inputs 
and outputs. The parameters of each convolutional block are the filter 
number × the kernel size × the stride. (b) Simulated decay profiles with 
different background noise levels. Both decays have same lifetime 
parameters with τ1 = 1 ns, τ2 = 3 ns, and α = 0.5. Their total counts are 
1000. The background noise level is quantized by the standard deviation 
σ of Gaussian noise. (c) – (f) Evaluation of the DL processor’s 
performance using testing dataset. Each group in boxplots contains 2000 
decay samples. 
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to 1, and NT is the total photon count of the decay. With noise 
included, the synthetic decay is: 

𝑌(𝑡) = 𝑦(𝑡) + √𝑦(𝑡)𝒩(0,1) + 𝒩(0, 𝜎),   (2) 

where 𝒩(μ, σ) is the Gaussian distribution with mean μ and a 
standard deviation σ. The last two terms of Eq. (2) refer to the 
shot and signal-independent noise, respectively. The shot 
noise originating from the discrete nature of photons follows a 
Poisson distribution, which is approximated using a normal 
distribution. The signal-independent noise has complex 
origins, including surrounding scattered light, TDC 
nonlinearity, circuit clock noise, and quantization noise. As the 
background noise can be subtracted in the preprocessing phase, 
the signal-independent noise can be described by an added 
Gaussian noise with zero mean and a standard deviation σ. Fig. 
2 (b) shows two examples of decays with different background 
noise levels. Larger σ corresponds pixels with a high noise 
level. For network training, 40000 different decays as 
described in Eq. (2) were generated with lifetime parameters 
τ1∈ [0.5, 2] ns, τ2∈ [2, 3.5] ns, and α∈ [0, 1]. The total NT 
ranges from 400 to 1e4, and the standard deviation σ of the 
Gaussian noise empirically varies from 1 to 5 to emulate 
different noise levels of SPAD array pixels. We used Gaussian 
functions to fit the IRFs of the pixels in the SPAD array sensor, 
and the FWHM is 324 ps. The simulated data were generated 
using MATLAB, and the NN was implemented with Pytorch 
in the Python environment [19]. The loss function is  
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where F is jth (j=1, …, M) end-to-end mapping function and M 
= 3 is the number of the output branches. Y is the input signal 
and 𝑌̂𝑗  is the corresponding ground-truth target of the jth output 
branch. N = 128 is the batch size number. ϴ is the 
hyperparameter of the network. The optimizer is the Adam 
algorithm with a learning rate of 1e-4. Once the NN was well-
trained, to reduce computational complexity and off-chip data 
transfer on the FPGA board, the weights and activations of 
layers were quantized to 1- and 4-bit, respectively [20]. The 
NN parameters were fetched via a Python script and stored in 
DL processor’s on-chip memory. 

Figs 2 (c) – (f) show the evaluation of the NN algorithm on 
a new testing dataset. As a comparison, the widely used LSF 
with the Levenberg-Marquardt algorithm was also used for 
data analysis. In Figs 2(c) and (d), the mean absolute errors 
(MAEs) of τ1, τ2, and α were evaluated by NN and LSF using 
samples with different total photon counts. The background 
noise levels randomly vary from σ = 1 to 5. In Figs 2(e) and 
(f), the MAEs of lifetime parameters using both algorithms 
were investigated under different background noise levels 
while the total photons of all samples vary from 400 to 1e4. 
Results show that our NN significantly outperforms LSF for 
resolving three different parameters.  The NN algorithm is also 
more stable against significant background noise. In addition, 
the calculation speed for the NN algorithm is 300-fold faster 
than LSF. The DL FLIM processor consumes a small amount 
of hardware resource. The on-chip memory is about 3 Mb and 
the power for lifetime analysis is only around 4.5 W. 

III. EXPERIMENTAL ANALYSIS 

As a proof-of-concept demonstration, the specimen is the 
acridine-orange-staining convallaria majlis rhizome sample. 
Before testing the sample, the IRFs of the SPAD array sensor 
were measured by replacing the sample with the solution of 
Ludox. A neutral density filter was placed in front of the laser 
source to attenuate the laser intensity. The IRF map of each 
pixel was used for calibration of the sensor. For the acquisition 
speed, a single frame for our SPAD sensor only takes 2 ms. In 
comparison, conventional laser-scanning FLIM systems 
usually need several seconds. The raw intensity image of the 
specimen is shown in Fig. 3 (a). The image's content is hardly 
seen from background noise due to sensor pixels' varying noise 
levels and sensitivities. The bright pixels are hot pixels (with a 
high dark count rate). Figure 3 (b) shows the global IRF and 
fluorescence histogram by summing all pixels together. A high 
background noise level and a broader IRF can be observed. 
Therefore, pixel alignments are needed to calibrate the 
distortion. The IRF peak positions of all pixels are aligned at a 
pre-defined position to ensure that the rising edges of all 
fluorescence decays are also aligned. Besides, all decays 
subtract background noise to ensure the mean noise level is 
nearly zero. Hot and silent pixels can be identified and masked 
through their corresponding IRF profiles. The calibration 
procedure can be programmed in the FPGA for further 
automatic pre-processing. The calibrated image is shown in 
Fig. 3(c). The image becomes apparent as the vascular bundles' 
structure can be easily identified. The two bright spots in the 
images are photodamaged areas caused by long exposure to 
the high-intensity laser. The photodamage changes the FLIM 
intensity and leads to an ultrashort lifetime component [21]. 
Fig. 3(d) shows the corresponding calibrated global histogram 
and IRF. The global analysis was conducted using LSF. The 
histogram was fitting by a bi-exponential model and the 
lifetime parameters are τ1 = 0.76 ns, τ2 = 3.04 ns, and α = 0.58. 
The amplitude-weighted average lifetime defined by 𝜏𝐴 =
𝛼𝑒−𝑡/𝜏1 + (1 − 𝛼)𝑒−𝑡/𝜏2  was also investigated. τA = 1.71 ns 
in global analysis.  

The DL processor was used to analyze FLIM data. A bi-
exponential model interpreted the experimental FLIM image. 

 
Fig. 3. The raw (a) and calibrated (c) intensity image obtained from the 
SPAD array sensor. The corresponding global histogram and IRF before 
(b) and after (d) calibration. The patterned noise in (d) is due to TDC 
nonlinearity. 
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The predicted results by the NN algorithm and LSF are shown 
in Fig.4. The NN algorithm delivers clear lifetime images for 
all parameters. The mean values of τ1, τ2, τA and α images are 
0.9 ns and 2.84 ns, 1.78 ns, and 0.55, respectively. The results 
correspond well with the global analysis above. As a 
comparison, the τ1, τ2, τA and α images calculated by LSF are 
noisier, less stable with a significant variation.  In addition, due 
to the considerable noise, LSF failed to converge in a 
substantial portion of pixels. The corresponding mean values 
of τ1, τ2, τA and α images are 0.32 ns, 2.3 ns, 0.82 ns, and 0.64, 
which show a significant discrepancy with previous results. 
The analysis of the experimental image using the NN 
algorithm in the DL processor only takes several a few 
hundred milliseconds. In contrast, traditional LSF needs 
several minutes on a desktop computer. The results show that 
the NN algorithm is faster, more robust, and more accurate to 
analyze fluorescence lifetimes. The intelligent wide-field 
FLIM system has a significant advantage in various 
applications such as lifetime-guided diagnosis, cell imaging, 
FLIM-FERT analysis.  

IV. CONCLUSION 
In conclusion, we designed a wide-field FLIM system with 

COMS SPAD sensors and a DL processor. The SPAD array 
can detect fluorescence signals parallel, leading to fast 
imaging speed. The processor was designed for intelligent data 
analysis, showing excellent performance in FLIM analysis 
from highly corrupted fluorescence signals. A light-weighted 
neural network algorithm was developed, trained, evaluated 
using simulated synthetic data, and implemented on the 

FPGA-based processor. The wide-field FLIM system was 
experimentally validated with cell samples to demonstrate its 
effectiveness. The system can be further developed into 
portable devices by designing compact optics and optimizing 
firmware of SPAD sensor and DL processor.  
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Fig. 4. Lifetime analysis using DL processor with NN algorithm and 
LSM, respectively. 

Smart wide-field fluorescence lifetime imaging system with CMOS single-photon avalanche diode arrays

4

https://pytorch.org/
http://www.becker-hickl.com/

	Smart Wide-field Fluorescence Lifetime Imaging System with CMOS Single-photon Avalanche Diode Arrays
	Abstract
	I. INTRODUCTION
	II. SYSTEM DESIGN AND EVALUATION
	A. System Design
	B. Neural network algorithm
	III. EXPERIMENTAL ANALYSIS
	IV. CONCLUSION
	REFERENCES



