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Abstract: We present a fast and accurate analytical method for fluorescence lifetime imaging mi-
croscopy (FLIM), using the extreme learning machine (ELM). We used extensive metrics to evaluate
ELM and existing algorithms. First, we compared these algorithms using synthetic datasets. The
results indicate that ELM can obtain higher fidelity, even in low-photon conditions. Afterwards,
we used ELM to retrieve lifetime components from human prostate cancer cells loaded with gold
nanosensors, showing that ELM also outperforms the iterative fitting and non-fitting algorithms. By
comparing ELM with a computational efficient neural network, ELM achieves comparable accuracy
with less training and inference time. As there is no back-propagation process for ELM during the
training phase, the training speed is much higher than existing neural network approaches. The
proposed strategy is promising for edge computing with online training.

Keywords: fluorescence lifetime imaging microscopy; single-photon time-correlated counting (TCSPC);
computational imaging; machine learning

1. Introduction

Fluorescence lifetime imaging microscopy (FLIM) has attracted growing interest in
biomedical applications, such as surgical procedures [1], tumor detection [2,3], cancer
diagnosis [4], and the study of protein interaction networks using Forster resonance energy
transfer (FRET) techniques [5]. It can quantitatively investigate local microenvironments
of fluorophores by measuring fluorophores’ lifetimes. For example, FLIM can observe
dynamic metabolic changes in living cells by measuring autofluorescence lifetimes of
NAD and NADP. This is utilized to mediate cell fate for diabetes and neurodegeneration
research [6]. Fluorescence lifetime is the average time a fluorophore stays excited before
releasing fluorescence. The process can be analyzed in the time or frequency domain. Time-
correlated single-photon counting (TCSPC) techniques [7] are more widely used [8-10] due
to their superior signal-to-noise ratio (SNR) and precise temporal resolution (in picoseconds)
compared with frequency-domain approaches. During data acquisitions, emitted photons
are detected by a single-photon detector, wherein a high-precision stopwatch circuit records
timestamps of detected photons. The stopwatch circuit generates an exponential histogram,
from which the fluorescence lifetime is extracted.

Estimating lifetime parameters is an ill-posed problem with high computational com-
plexity. Numerous algorithms have been developed to quantify lifetimes and relevant
parameters. Iterative fitting and optimization approaches were reported to deduce fluo-
rescence lifetimes. A convex optimization method [11] was utilized for high-resolution
FLIM, where the accuracy is related to fine-tuned hyperparameters in the cost function.
An F-value-based optimization algorithm [12] was used to minimize signal distortion
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introduced by pile-up effects and the dead time of single-photon detectors. A Laguerre
expansion method [13-15] was reported to speed up least-squares deconvolutions.

On the other hand, non-iterative fitting methods were introduced to reduce computing
complexity whilst maintaining high accuracy. A new nonparametric empirical Bayesian
framework [16] was adopted for lifetime analysis based on a statistical model, where the
expectation—-maximization algorithm was employed to solve the optimization problem.
A hardware-friendly fitting-free center of mass (CMM) [17-19] algorithm was proposed
to deliver fast analysis and has been applied to a flow-cytometry system [20,21]. Integral
equation methods (IEM) [22] were also implemented in FPGA devices to provide real-
time analysis. Direction-of-arrivals estimation [23] was adopted to deliver a non-iterative
and model-free lifetime reconstruction strategy, requiring a few time bins. A histogram
cluster method [24] divides histograms into clusters instead of processing histograms
pixel-by-pixel, enhancing the analysis speed. However, challenges remain. Firstly, most
of these algorithms need a long acquisition time to guarantee the reconstruction fidelity,
likely causing photobleaching. A fast algorithm suitable for low photon counts conditions
is, therefore, desirable. Secondly, iterative or probabilistic methods are not portable to
hardware, impeding the on-chip computing of TCSPC systems.

Artificial neural networks (ANNs) have proved promising for FLIM analysis. FLI-
NET [25] used a 3-D convolutional neural network (CNN) to analyze bi-exponential decays
via a branched architecture. Its compressed-sensing [26] version used a single-pixel detector
and a digital micromirror device to reconstruct intensity and lifetime images. A 1-D CNN
architecture [27] was introduced to reduce the computational load for multi-exponential
analysis, using a similar branched structure. A multi-layer perceptron (MLP) method [28]
was proposed for mono-exponential analysis with high spatial-resolution SPAD arrays.
Another MLP [29] was reported combining maximum likelihood estimation algorithms
and using fully connected layers to resolve bi-exponential decays. Moreover, another
ANN technique [30] was introduced to fuse high-resolution fluorescence intensity and
low-resolution lifetime images for wield-field FLIM systems. However, the training and
inference of the ANN’s are slow. Even with powerful GPUs, it usually takes a long training
time (hours) to train a network. It is also time consuming to retrain a model when the
lifetime range is altered.

Pixel-wise lifetime recovery has been widely used, since it is consistent with the sensor
readout and more computationally economical than 3-D algorithms. The extreme learning
machine (ELM) [31] is an efficient algorithm to process 1-D signals for biological appli-
cations, such as electrocardiogram (ECG) and electroencephalogram (EEG) signals [32].
Inspired by related literature, we used ELM to reconstruct lifetimes from 1-D histograms us-
ing multi-variable regression. Contributions of the ELM-based lifetime inference approach
are that:

(1) Itis data-driven without a back-propagation learning strategy. It achieves less training
time than existing ANN methods, paving the way for fast online training on embedded
hardware for FLIM.

(2) It can resolve mono- and bi-exponential models widely employed in practical experi-
ments, wherein the amplitude and intensity average lifetimes were investigated.

(3) Reconstructed lifetime parameters from ELM are more accurate than fitting and
non-fitting algorithms regarding synthetic and experimental data under different
photon-counting conditions whilst maintaining fast computing speed.

This paper presents a theory applying ELM to FLIM (Section 2), algorithms’ compar-
isons regarding synthetic data with low-photon-count scenarios (Section 3), and algorithms’
comparisons regarding an incubated living cell under different levels of photon counts
(Section 4).
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2. Apply ELM to FLIM

Due to ELM'’s superior capability of processing 1-D signals, we associated synthetic
1-D histograms with ELM regarding training and inferencing phases. We also illustrate the
probabilistic model of photon arrivals of FLIM data and the artificial IRF based on TCSPC.

2.1. ELM Theory

Conventionally, back-propagation is the gold standard to minimize object functions in
most ANN architectures. ELM is theoretically a single hidden layer feed-forward neural
network (SLFN) that uses matrix inversion (or Moore-Penrose matrix inversion) and
minimum norm least-square solution to train models. The training can be accelerated
significantly compared with iterative back-propagation procedures whilst avoiding slow
converges and over-fitting resulting from back-propagation. Assume H training samples
(H pairs of vectors x; = [x;1, Xj2, ..., xim]T e R"andy; = [yi1, Yio, --- , Yin) € R" are the
ith input vectors and the ith target vectors, respectively, and suppose there are L nodes in
the single hidden layer; the output matrix of the hidden layer can be defined as:

p(wy-x1+by) - @(wp-x+br)
@(wy-xg+b1) - @lwr-xg+br) |4,

where ¢(-) is the activation function, and usually, a sigmoid function can achieve a relatively
good result, and w; = (w1, wp, ..., wlm]T and b; = [by, by, ..., bL]T, I=1,...,L. are
randomly assigned weights and biases between the input nodes and the hidden layer
before training. Say f; is the weighting connecting the Ith hidden layer and output nodes,

defined as:
Bl Bii - B
B=| : | = - : @)

BL Bri - PBrn 1y,
To learn the parameter matrix of f with a dimension of L X n, the ridge loss function
is widely adopted as:
argmin|[AB — Y||* + Al|B?, ®)
IBERLX”

where A is the matrix composed of the activation functions with dimensions H x L; Yis a
matrix with dimensions H X n containing ground truth (GT) data:

V1T yin 0 Y

Y= : = : . : . 4)

Y YH1 - YHn 1y,

T

Through solving the loss function, we can obtain the matrix  by:
B=(ATA+AD) ATy, ®)

where I is an identity matrix with dimensions L x L, the hyperparameter A helps obtain a
reliable result when the matrixAT A+ AI is not full rank.

2.2. TCSPC Model for FLIM

Fluorescence emission can be modeled with mono- or multi-exponential decay func-
tions and a bi-exponential model can approximately deduce a signal following a multi-
exponential decay. Therefore, we focus on lifetime analysis from mono- and bi-exponential
models in this work. Fluorescence functions can be adopted to formulate measured his-
tograms containing multiple lifetime components and corresponding amplitude fractions.
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Therefore, for each pixel, the measured decay consisting of K lifetime components is
formulated as: «

h(t) = IRF(t) x PY_ axe™"/% +n(t), (6)

k=1

where the IRF(-) is the system’s instrument response function, P is proportional to the
fluorescence intensity, T is the kth lifetime component, «y is the kth amplitude fraction,
and n(t) includes Poisson noise [33] and dark count rate of the sensor, t =[1,2, ..., T]is the
time-bin index of the TCSPC module. As photon arrivals follow the Poisson distribution,
with C cycles of laser excitation, the ultimate distribution in one pixel can be derived as:

D ~ Poisson(C/OTh(t)dt). 7)

Based on this theoretical TCSPC model, we can generate training datasets for ELM.
Synthetic curves correspond to column vectors in the input matrix x. Apart from multi-
exponential decays, we define the amplitude-weighted lifetime T4

K
Tao = ) Ty 8
k=1
and intensity-weighted average lifetime 7]
K
kzl s
n =" )
L ATk
k=1

to evaluate ELM.

2.3. Training Data Preparation

The training datasets contain 20,000 synthetic histograms, and ground truth (GT)
lifetime parameters were generated to train the ELM network. Synthetic decays comply
with Equation (6) and the IRF curve is modelled via a Gaussian curve:

IRF(t) = e[—(t—t02‘41n2h2/FWHM2], (10)

where FWHM (0.1673 ns) is compatible with the two-photon FLIM system for FLIM mea-
surements, ty (14th) is the index of the peak, & (0.039 ns) is the bin width of the TCSPC
system. Both mono- and bi-exponential decay models were generated for performance
evaluation. Lifetime constants t were set in [0.1, 5] ns for the mono-exponential decay
model and 71, T are set in [0.1, 1], [1, 3] ns for bi-exponential models. The structure of ELM
is depicted in Figure 1. Suppose the input vector is a pixel-wise histogram measured by
a TCSPC system containing 256 time bins in the inference phase. The number of output
nodes depends on the number of lifetime components we defined in synthetic datasets.
For instance, if the measured data consists of bi-exponential decay model, the output layer
should be configured as three nodes, namely, 71, T2, and . We can easily obtain average
lifetimes from Equations (8) and (9). All the histograms from the sensor are fed into the
network sequentially; lifetime parameters can be obtained from output nodes pixel by pixel.
The number of nodes in the hidden layer can be flexibly adjusted to achieve a trade-off
between accuracy and computing time consumption.
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F=% 1. (12)
X

F>1 and a lower F means higher precision, where I is the detected photon count, 6x is the
standard deviation of the estimated lifetime parameter, and x is the GT parameter. We
generated 200 synthetic decays for given ranges of lifetimes and peak intensities in Figfité

4. Figure 4a shows the F-value of mono-exponential decays versus the lifetime in the range
~[0.1, 5] ns. Figure 4b shows the F-value of bi-exponential decays versus 71, 72, and « in
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F >1 and a lower F means higher precision, where I is the detected photon count, dx is
the standard deviation of the estimated lifetime parameter, and x is the GT parameter. We
generated 200 synthetic decays for given ranges of lifetimes and peak intensities in Figure 4.
Figure 4a shows the F-value of mono-exponential decays versus the lifetime in the range
~[0.1, 5] ns. Figure 4b shows the F-value of bi-exponential decays versus 71, Tz, and « in
[0.1, 1] ns, [1, 3] ns, and [0, 1], respectively. We assigned 200 decays with a total photon
count (<2000) per synthetic histogram for both scenarios. Both figures show that ELM
obtained a smaller F than NLSF, meaning ELM can achieve better precision. Furthermore,
we defined the bias At/T to evaluate ELM and NLSF versus the photon count. T was
set to 3.0 ns for mono-exponential decays. 71, T2, and a were set to 0.3 ns, 3.0 ns, and 0.5
for bi-exponential decays. Figure 4c shows that the bias of NLSF increases as the photon
count increases, which is worse than ELM. Figure 4d shows that the bias of ELM is smaller
than NLSF, and ELM is more robust to varying photon counts. Moreover, NLSF is also
sensitive to initial conditions of lifetime parameters [34]. The bias decreases when the initial
conditions are closed to GT values, meaning that users need to have prior knowledge about
the parameters to be extracted.
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3.2. Comparisons of Ta

We evaluated ELM in estimating 74 in various count conditions. As shown in Figure
5a, we set three regions at three count levels, changing 74 from top to bottom. We ref&tf#4

the three regions as low, middle, and high counts hereafter. Figure 5b depicts the GT ta.
From Figure 5c,d, ELM shows a more accurate 74 image than NLSF, with ELM producing
3. 3m@bleMBEihaf Y LSF in each region. We also included the non-fitting BCMM [18] for
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btheFwise bias correction is needed [18]).
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to and biased by the measurement window 1if bias correction is not included. Although
ggl obtamed as G{;t‘naller overall MSE, the bias occurs as 71 becomes longer. It agrees with
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MAE decrease, and a moderate processing time was achieved, as shown in Figure 7b.
Moreover, we compared ELM with relevant ANNSs for FLIM. Since ELM uses the Moore—
Penrose matrix inversion strategy to learn parameters instead of back-propagation, it is
much faster. As shown in Table 2, although ELM has more parameters than 1-D CNN [27],
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4.1. Experimental Setup and Sample Preparation

We used the proposed ELM to analyze a living cellular sample, acquired by a two-
photon FLIM system. To achieve an efficient imaging contrast, prostate cancer cells were
treated with GNRs functionalized with Cy5 labeled ssDNA [40]. GNRs have tunable
longitudinal surface plasmon resonance and enable the interactions between the strong
electromagnetic field and activated fluorophore in biological samples [41,42]. Function-
alizing GNRs with fluorophore-labelled DNA has been adopted to probe endocellular
components [43,44], including microRNA detections for human breast cancer or moni-
toring the intracellular level of metal ions in human serums. Here, prostate cancer cells
were incubated with nanoprobe for 6 h and washed three times with phosphate-buffered
saline (PBS). Cells were blended with 4% paraformaldehyde for 15 min. After removing
paraformaldehyde, cells were washed with distilled water three times. The two-photon
FLIM platform consists of a confocal microscope (LSM 510, Carl Zeiss, Oberkochen, Ger-
many) with 256 x 256 spatial resolution, where the scan module includes four individual
PMTs. A TCSPC module (SPC-830, Becker & Hickl GmbH, Berlin, Germany) with 256 time
bins and 39 picosecond timing resolution was mounted on the microscope. A tunable
femtosecond Ti: sapphire laser (Chameleon, Coherent, Santa Clara, CA, USA) was con-
figured with a repetition frequency 80 MHz and 850 nm wavelength to excite the sample.
The emission light was collected using a 60 x water-immersion objectives lens (numerical
aperture = 1.0) and a 500-550 nm bandpass filter. One hundred scanning cycles were
selected to prevent GNRs heating and obtain sufficient photons, where each cycle took
three seconds.

4.2. Algorithm Evaluation

Due to the strong two-photon photoluminescence property of GNRs, high optical
discernibility can be observed between the GNRs and cell tissues [45]. Figure 8a shows
the grey-scale intensity image of the sample, where the bright spots are GNRs. As the
background pixels with fewer photon counts imply less useful information, they can be
neglected during the analysis. In this case, a threshold (100 photon counts) was considered
to neglect these pixels. As conventional data readout from TCSPC systems is pixel by pixel,
accumulated histograms can be directly fed into the ELM without data conversion. The
biological sample should be illuminated with a long acquisition time to achieve a high
SNR to obtain a reliable reference. However, a long acquisition time can easily lead to
photobleaching. The previous study [27] reported that a phasor projection image could
alternatively serve as a reference image to identify autofluorescence and gold nanoprobes.
Two clusters representing autofluorescence of the cell and gold nanoprobes can be observed
in the phasor plot shown in Figure 8b, after we had applied pixel filtering. Cluster 2
contains the majority of pixels with shorter lifetimes depicting gold nanoprobes. A fitted
line was obtained by a linear regression fitting algorithm:

N
argmin ) ||s, — (agu +b)|[3 (13)
ab n=1

where g and b are slope and intercept of the fitted line, g, and s, are locations of pixels in the
phasor domain. The intersection points A(gs,5:) and B(gy,525) can be obtained accordingly.
As shown in Figure 8c, we employed the pixel-wise phasor score p to generate a phasor
projection image by computing:

pn = [(gn — &2)(81 — &2) + (sn —52)(s1 —%2)]/D, (14)

where D is the Euclidean distance between A and B, n is the number of filtered pixels.
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vergent results due to dealing with ultra-short decays caused by gold nanoprobes. As
mentioned, BCMM is not robust in varying ranges of photon counts; many pixels are out
of the defined range (0 to 2 ns), as the white pixels show in Figure 8g. Nevertheless, BCMM
is a fast algorithm that only took 6.53 s to reconstruct the image. The inference time of 1-
D CNN on a GPU (NVIDIA GTX 850M) is 116.43 s, whereas ELM only consumed T-¥3fd4

during inference on the CPU.
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that ELM is robust, even at low counts.
Fragile tissues, such as retinas, cannot be excited by laser for a long time. To avoid

tissue damage and photobleaching caused by a long acquisition time, we investigated
ELM’s performance for data in low-photon scenarios. We kept the experimental setup iden-
tical to Section 4.1. To acquire less-emitted photons, we chose the field of view with fewer
nanoprobes. Increased scanning cycles were set on the software. As the number of cycles
increased, we changed the intensity threshold to guarantee sufficient pixels were saved.
The value of the intensity threshold should be fine-tuned according to different bio-samples
(5% of total counts in our experiments). Figure 9a,b depict intensity and reconstructed 74
images, respectively. The lifetime of cells and nanoprobes can be consistently reconstructed,
even if the cycle decreases to 10. Notably, nanoprobes and boundaries of cells cannot be
identified in intensity images with 10 and 40 cycles, yet lifetime images can restore the
lifetime and reveal cell boundaries. Below each lifetime image in Figure 9b, histograms
of pixel occurrence were below 7,4 images, showing means y and standard deviations o.
There was no distinct shift in u and ¢ at different collection cycles, indicating that ELM is
robust, even at low counts.
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