181 research outputs found

    Hole Hopping Across a Protein-Protein Interface.

    Get PDF
    We have investigated photoinduced hole hopping in a Pseudomonas aeruginosa azurin mutant Re126WWCuI, where two adjacent tryptophan residues (W124 and W122) are inserted between the CuI center and a Re photosensitizer coordinated to a H126 imidazole (Re = ReI(H126)(CO)3(dmp)+, dmp = 4,7-dimethyl-1,10-phenanthroline). Optical excitation of this mutant in aqueous media (//(CuII)' back ET that occurs over 12 Å, in contrast to the 23 Å, 120 us step in Re126WWCuI. Importantly, dimerization makes Re126FWCuI photoreactive and, in the case of {Re126WWCuI}2, channels the photoproduced "hole" to the molecule that was not initially photoexcited, thereby shortening the lifetime of ReI(H126)(CO)3(dmp•-)//CuII. Whereas two adjacent W124 and W122 indoles dramatically enhance CuI->*Re intramolecular multistep ET, the tryptophan quadruplex in {Re126WWCuI}2 does not accelerate intermolecular electron transport; instead, it acts as a hole storage and crossover unit between inter- and intramolecular ET pathways. Irradiation of {Re126WWCuII}2 or {Re126FWCuII}2 also triggers intermolecular *Re////(W122•+)' intermolecular charge recombination. Our findings shed light on the factors that control interfacial hole/electron hopping in protein complexes and on the role of aromatic amino acids in accelerating long-range electron transport

    CT colonography reporting and data system: A consensus proposal

    Get PDF
    We have proposed a practical reporting scheme that includes recommendations for the follow-up of colonic polyps that are based on currently available published assessments of the clinical importance and expected growth potential of these lesions. © RSNA, 2005

    Photophysical Heavy-Atom Effect in Iodinated Metallocorroles: Spin-Orbit Coupling and Density of States

    Get PDF
    This work was supported by COST Actions CM1202 and CM1405 Actions, the Czech Science Foundation (GAČR) grant 17-011375, and the Swiss NSF via the NCCR:MUST, contracts n° 200021_137717 and IZK0Z2_150425

    CT colonography: optimisation, diagnostic performance and patient acceptability of reduced-laxative regimens using barium-based faecal tagging

    Get PDF
    To establish the optimum barium-based reduced-laxative tagging regimen prior to CT colonography (CTC). Ninety-five subjects underwent reduced-laxative (13 g senna/18 g magnesium citrate) CTC prior to same-day colonoscopy and were randomised to one of four tagging regimens using 20 ml 40%w/v barium sulphate: regimen A: four doses, B: three doses, C: three doses plus 220 ml 2.1% barium sulphate, or D: three doses plus 15 ml diatriazoate megluamine. Patient experience was assessed immediately after CTC and 1 week later. Two radiologists graded residual stool (1: none/scattered to 4: >50% circumference) and tagging efficacy for stool (1: untagged to 5: 100% tagged) and fluid (1: untagged, 2: layered, 3: tagged), noting the HU of tagged fluid. Preparation was good (76–94% segments graded 1), although best for regimen D (P = 0.02). Across all regimens, stool tagging quality was high (mean 3.7–4.5) and not significantly different among regimens. The HU of layered tagged fluid was higher for regimens C/D than A/B (P = 0.002). Detection of cancer (n = 2), polyps ≥6 mm (n = 21), and ≤5 mm (n = 72) was 100, 81 and 32% respectively, with only four false positives ≥6 mm. Reduced preparation was tolerated better than full endoscopic preparation by 61%. Reduced-laxative CTC with three doses of 20 ml 40% barium sulphate is as effective as more complex regimens, retaining adequate diagnostic accuracy

    Cost-effectiveness analysis of 3-D computerized tomography colonography versus optical colonoscopy for imaging symptomatic gastroenterology patients.

    No full text
    BACKGROUND: When symptomatic gastroenterology patients have an indication for colonic imaging, clinicians have a choice between optical colonoscopy (OC) and computerized tomography colonography with three-dimensional reconstruction (3-D CTC). 3-D CTC provides a minimally invasive and rapid evaluation of the entire colon, and it can be an efficient modality for diagnosing symptoms. It allows for a more targeted use of OC, which is associated with a higher risk of major adverse events and higher procedural costs. A case can be made for 3-D CTC as a primary test for colonic imaging followed if necessary by targeted therapeutic OC; however, the relative long-term costs and benefits of introducing 3-D CTC as a first-line investigation are unknown. AIM: The aim of this study was to assess the cost effectiveness of 3-D CTC versus OC for colonic imaging of symptomatic gastroenterology patients in the UK NHS. METHODS: We used a Markov model to follow a cohort of 100,000 symptomatic gastroenterology patients, aged 50 years or older, and estimate the expected lifetime outcomes, life years (LYs) and quality-adjusted life years (QALYs), and costs (£, 2010-2011) associated with 3-D CTC and OC. Sensitivity analyses were performed to assess the robustness of the base-case cost-effectiveness results to variation in input parameters and methodological assumptions. RESULTS: 3D-CTC provided a similar number of LYs (7.737 vs 7.739) and QALYs (7.013 vs 7.018) per individual compared with OC, and it was associated with substantially lower mean costs per patient (£467 vs £583), leading to a positive incremental net benefit. After accounting for the overall uncertainty, the probability of 3-D CTC being cost effective was around 60 %, at typical willingness-to-pay values of £20,000-£30,000 per QALY gained. CONCLUSION: 3-D CTC is a cost-saving and cost-effective option for colonic imaging of symptomatic gastroenterology patients compared with OC

    Evaluation of the genetic polymorphism of Plasmodium falciparum P126 protein (SERA or SERP) and its influence on naturally acquired specific antibody responses in malaria-infected individuals living in the Brazilian Amazon

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The <it>Plasmodium falciparum </it>P126 protein is an asexual blood-stage malaria vaccine candidate antigen. Antibodies against P126 are able to inhibit parasite growth <it>in vitro</it>, and a major parasite-inhibitory epitope has been recently mapped to its 47 kDa N-terminal extremity (octamer repeat domain – OR domain). The OR domain basically consists of six octamer units, but variation in the sequence and number of repeat units may appear in different alleles. The aim of the present study was to investigate the polymorphism of P126 N-terminal region OR domain in <it>P. falciparum </it>isolates from two Brazilian malaria endemic areas and its impact on anti-OR naturally acquired antibodies.</p> <p>Methods</p> <p>The study was carried out in two villages, Candeias do Jamari (Rondonia state) and Peixoto de Azevedo (Mato Grosso state), both located in the south-western part of the Amazon region. The repetitive region of the gene encoding the P126 antigen was PCR amplified and sequenced with the di-deoxy chain termination procedure. The antibody response was evaluated by ELISA with the Nt47 synthetic peptide corresponding to the P126 OR-II domain.</p> <p>Results</p> <p>Only two types of OR fragments were identified in the studied areas, one of 175 bp (OR-I) and other of 199 bp (OR-II). A predominance of the OR-II fragment was observed in Candeias do Jamari whereas in Peixoto de Azevedo both fragments OR-I and OR-II were frequent as well as mixed infection (both fragments simultaneously) reported here for the first time. Comparing the DNA sequencing of OR-I and OR-II fragments, there was a high conservation among predicted amino acid sequences of the P126 N-terminal extremity. Data of immune response demonstrated that the OR domain is highly immunogenic in natural conditions of exposure and that the polymorphism of the OR domain does not apparently influence the specific immune response.</p> <p>Conclusion</p> <p>These findings confirm a limited genetic polymorphism of the P126 OR domain in <it>P. falciparum </it>isolates and that this limited genetic polymorphism does not seem to influence the development of a specific humoral immune response to P126 and its immunogenicity in the studied population.</p

    Two Tryptophans Are Better Than One in Accelerating Electron Flow through a Protein

    Get PDF
    We have constructed and structurally characterized a <i>Pseudomonas aeruginosa</i> azurin mutant <b>Re126WWCu<sup>I</sup></b>, where two adjacent tryptophan residues (W124 and W122, indole separation 3.6–4.1 Å) are inserted between the Cu<sup>I</sup> center and a Re photosensitizer coordinated to the imidazole of H126 (Re<sup>I</sup>(H126)­(CO)<sub>3</sub>(4,7-dimethyl-1,10-phenanthroline)<sup>+</sup>). Cu<sup>I</sup> oxidation by the photoexcited Re label (*Re) 22.9 Å away proceeds with a ∼70 ns time constant, similar to that of a single-tryptophan mutant (∼40 ns) with a 19.4 Å Re–Cu distance. Time-resolved spectroscopy (luminescence, visible and IR absorption) revealed two rapid reversible electron transfer steps, W124 → *Re (400–475 ps, <i>K</i><sub>1</sub> ≅ 3.5–4) and W122 → W124<sup>•+</sup> (7–9 ns, <i>K</i><sub>2</sub> ≅ 0.55–0.75), followed by a rate-determining (70–90 ns) Cu<sup>I</sup> oxidation by W122<sup>•+</sup> ca. 11 Å away. The photocycle is completed by 120 μs recombination. No photochemical Cu<sup>I</sup> oxidation was observed in <b>Re126FWCu<sup>I</sup></b>, whereas in <b>Re126WFCu<sup>I</sup></b>, the photocycle is restricted to the ReH126W124 unit and Cu<sup>I</sup> remains isolated. QM/MM/MD simulations of <b>Re126WWCu<sup>I</sup></b> indicate that indole solvation changes through the hopping process and W124 → *Re electron transfer is accompanied by water fluctuations that tighten W124 solvation. Our finding that multistep tunneling (hopping) confers a ∼9000-fold advantage over single-step tunneling in the double-tryptophan protein supports the proposal that hole-hopping through tryptophan/tyrosine chains protects enzymes from oxidative damage

    Feasibility study of computed tomography colonography using limited bowel preparation at normal and low-dose levels study

    Get PDF
    The purpose was to evaluate low-dose CT colonography without cathartic cleansing in terms of image quality, polyp visualization and patient acceptance. Sixty-one patients scheduled for colonoscopy started a low-fiber diet, lactulose and amidotrizoic-acid for fecal tagging 2 days prior to the CT scan (standard dose, 5.8–8.2 mSv). The original raw data of 51 patients were modified and reconstructed at simulated 2.3 and 0.7 mSv levels. Two observers evaluated the standard dose scan regarding image quality and polyps. A third evaluated the presence of polyps at all three mSv levels in a blinded prospective way. All observers were blinded to the reference standard: colonoscopy. At three times patients were given questionnaires relating to their experiences and preference. Image quality was sufficient in all patients, but significantly lower in the cecum, sigmoid and rectum. The two observers correctly identified respectively 10/15 (67%) and 9/15 (60%) polyps ≥10 mm, with 5 and 8 false-positive lesions (standard dose scan). Dose reduction down to 0.7 mSv was not associated with significant changes in diagnostic value (polyps ≥10 mm). Eighty percent of patients preferred CT colonography and 13% preferred colonoscopy (P<0.001). CT colonography without cleansing is preferred to colonoscopy and shows sufficient image quality and moderate sensitivity, without impaired diagnostic value at dose-levels as low as 0.7 mSv
    • …
    corecore