9 research outputs found
Polyphenol consumption and Nonalcoholic fatty liver disease risk in adults
Abstract In this cross-sectional investigation, the primary objective was to explore the correlation between the consumption of polyphenols and the likelihood of non-alcoholic fatty liver disease (NAFLD) in the adult population participating in the Hoveyzeh cohort. Data from the Hoveyzeh cohort study, part of the Persian Cohort Study, involving 10,009 adults aged 35–70, were analyzed. Exclusions were made for missing data, extreme energy intake, and liver cancer patients. Dietary habits were assessed using a food frequency questionnaire, and polyphenol intake was calculated using the Phenol Explorer database. Logistic regression analyses, adjusted for confounders, were performed to assess the relationship between polyphenol subclasses (total polyphenols, total flavonoids, phenolic acid, and lignin) and NAFLD. Among 9894 participants, those in the highest quintile of total polyphenol (OR 0.65, CI 0.5–0.84; P = 0.007), phenolic acid (OR 0.67, CI 0.52–0.86; P < 0.001), and lignin intake (OR 0.69, CI 0.52–0.87; P = 0.001) demonstrated lower odds of NAFLD compared to the lowest quintile, even after adjusting for confounding factors. However, no significant association was found between total flavonoid intake and NAFLD (OR 1.26, CI 0.96–1.67; P = 0.47). Subgroup analysis indicated a significant inverse association between total polyphenols and NAFLD in women (OR 0.64, CI 0.42–0.93; P = 0.001). Higher intake of total polyphenols, phenolic acid, and lignin was associated with reduced odds of NAFLD among adults in the Hoveyzeh cohort. This suggests that dietary patterns rich in these polyphenols may play a role in mitigating the risk of NAFLD. Further interventional and longitudinal studies are needed to validate these findings and explore potential preventive strategies involving polyphenol-rich diets
Topical Bambusa vulgaris Extract Enhances Wound Healing in Cutaneous Leishmaniasis
Background. Bambusa vulgaris (Tabashir) has been shown to have antimicrobial, antioxidant, and anti-inflammatory effects due to the presence of ascorbic acid, vitamin B2, flavonoid, and phenolic compounds which can be beneficial in the process of wound healing. The current study aimed to evaluate the effects of topical Tabashir extract on cutaneous leishmaniasis (CL) caused by Leishmania major in BALB/c mice. Methods. Twenty-eight female BALB/c mice (4 weeks old, 18 ± 4 grams) were injected subcutaneously in tail-base with L. major amastigotes. Treatment started when the CL lesions were appeared and continued for 21 days. Mice were then divided into four groups: E1, treated daily with 5% of Tabashir extract gel; E2, treated daily with 10% Tabashir gel; C1, irrigated daily only with normal saline; and C2, received vehicle gel daily. The wounds’ sizes were measured every 3 days, using vernier caliper. The volume densities of vessels, collagens, and hair follicles, vessels’ length density, and mean diameter were soteriologically determined. Results. Tabashir enhanced wound closure rate through increasing the number of fibroblasts, collagen bundles, and vessels, according to histomorphometric evaluation while it did not affect the parasitic load. Findings of the in vitro study revealed that the extract has substantial mortality for the Leishmania promastigotes. Conclusion. Topical Tabashir showed promising effects on the healing process of skin wounds caused by CL in this experimental study. Further studies are suggested to find out the molecules which are involved in the healing process
The concentration of potentially toxic elements (PTEs) in drinking water from Shiraz, Iran: a health risk assessment of samples
The existence of potentially toxic elements (PTEs) in water bodies has posed a menace to human health. Thus, water resources should be protected from PTEs, and their effect on the exposed population should be investigated. In the present investigation, the concentrations of PTEs such as lead (Pb), mercury (Hg), manganese (Mn), and iron(Fe) in the drinking water of Shiraz, Iran, were determined for the first time. In addition, hazard quotient, hazard index, cancer risk, and sensitivity analysis were applied to estimate the noncarcinogenic and carcinogenic impacts of Pb, Hg, Mn, and Fe on exposed children and adults through ingestion. The mean concentrations (mu g/L) of Pb, Hg, Mn, and Fe were 0.36, 0.32, 2.28, and 8.72, respectively, in winter and 0.50, 0.20, 0.55, and 10.36, respectively, in summer. The results displayed that Fe concentration was more than the other PTEs. PTE concentrations were lower than the standard values of the Environment Protection Agency and World Health Organization. Values of the degree of contamination and heavy metal pollution index for lead, mercury, manganese, and iron were significantly low (< 1) and excellent (< 50), respectively. Based on the Spearman rank correlation analysis, positive and negative relationships were observed in the present study. The observations of the health risk assessment demonstrated that mercury, lead, iron, and manganese had an acceptable level of noncarcinogenic harmful health risk in exposed children and adults (hazard quotients < 1 and hazard index < 1). The carcinogenic risk of lead was low (< E - 06), which can be neglected. Monte Carlo simulation showed that water intake rate and mercury concentration were the most critical parameters in the hazard index for children and adults. Lead concentration was also the most crucial factor in the cancer risk analysis. The results of the present study proved that the drinking water of Shiraz is safe and healthy and can be confidently consumed by people