22 research outputs found

    Localization of the Sensory Neurons and Mechanoreceptors Required for Stretch-Evoked Colonic Migrating Motor Complexes in Mouse Colon

    Get PDF
    The pacemaker and pattern generator that underlies the cyclical generation of spontaneous colonic migrating motor complexes (CMMCs) has recently been identified to lie within the myenteric plexus and/or muscularis externa. Neither the mucosa, nor the release of substances from the mucosa were found to be required for the spontaneous generation of CMMCs. However, it is known that stretch applied to the colonic wall can also evoke CMMCs and since stretch of the gut wall is known to stimulate the mucosa, it is not clear whether release of substances from the mucosa and/or submucosal plexus are required for stretch-evoked CMMCs. Therefore, the aim of this study was to determine whether circumferential stretch-evoked CMMCs require the presence of the mucosa and/or submucosal plexus in isolated mouse colon. Spontaneous CMMCs were recorded from full length sheet preparations of colon in vitro. Graded circumferential stretch (at a rate of 100 Όm/s) applied to a 15-mm segment of mid–distal colon reliably evoked a CMMC, which propagated to the oral recording site. Sharp dissection to remove the mucosa and submucosal plexus from the entire colon did not prevent spontaneous CMMCs and circumferential stretch-evoked CMMCs were still reliably evoked by circumferential stretch, even at significantly lower thresholds. In contrast, in intact preparations, direct stimulation of the mucosa (without accompanying stretch) proved highly inconsistent and rarely evoked a CMMC. These observations lead to the inescapable conclusion that the sensory neurons activated by colonic stretch to initiate CMMCs lie in the myenteric plexus, while the mechanoreceptors activated by stretch, lie in the myenteric ganglia and/or muscularis externa. Stretch activation of these mechanoreceptors does not require release of any substance(s) from the mucosa, or neural inputs arising from submucosal ganglia

    Novel spinal pathways identified by neuronal c-Fos expression after urethrogenital reflex activation in female guinea pigs

    Get PDF
    © 2014. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/Pudendal nerve-spinal pathways are involved in urethrogenital sensation, pain and sexual activity. However, details of these pathways and their modulation are unclear. We examined spinal pathways activated by the urethrogenital reflex (UGR) and visualised by c-Fos immunoreactivity in reflexly activated neurons within spinal cord. In anaesthetised female guinea pigs, a balloon was inserted into the urethra and inflated with short-repeat or long-continuous distension to activate the UGR. A second balloon recorded reflex contractions of the vagina and uterus. Two control groups had either no balloon or a vaginal balloon only. Ninety minutes after UGR activation, c-Fos immunoreactivity in L3 and S2 spinal segments was examined. Reflex activated c-Fos immunoreactivity also was investigated in some animals with acute spinal transections at either L4 or T12 levels. There was no significant difference in spinal c-Fos expression between the control groups. Short-repeat distension reliably induced a UGR and a 2-3 fold increase in c-Fos-expressing neurons throughout dorsal, intermediate and lateral spinal grey matter at S2 and about two fold increase in superficial dorsal horn at L3. T12 transection had little effect on c-Fos expression at either spinal level. However, after L4 transection, UGR generation was associated with a 4-6 fold increase in c-Fos-expressing neurons in lateral horn and central canal areas at S2, and but only 20-30% increase at L3. Thus, UGR activates preganglionic neurons projecting to pelvic viscera in both sacral and lumbar spinal cord. The reflex also must activate ascending and descending spinal inhibitory circuits that suppress c-Fos-expression in neurons at both sacral and lumbar spinal levels

    Identification of the Visceral Pain Pathway Activated by Noxious Colorectal Distension in Mice

    Get PDF
    In patients with irritable bowel syndrome, visceral pain is evoked more readily following distension of the colorectum. However, the identity of extrinsic afferent nerve pathway that detects and transmits visceral pain from the colorectum to the spinal cord is unclear. In this study, we identified which extrinsic nerve pathway(s) underlies nociception from the colorectum to the spinal cord of rodents. Electromyogram recordings were made from the transverse oblique abdominal muscles in anesthetized wild type (C57BL/6) mice and acute noxious intraluminal distension stimuli (100–120 mmHg) were applied to the terminal 15 mm of colorectum to activate visceromotor responses (VMRs). Lesioning the lumbar colonic nerves in vivo had no detectable effect on the VMRs evoked by colorectal distension. Also, lesions applied to the right or left hypogastric nerves failed to reduce VMRs. However, lesions applied to both left and right branches of the rectal nerves abolished VMRs, regardless of whether the lumbar colonic or hypogastric nerves were severed. Electrical stimulation applied to either the lumbar colonic or hypogastric nerves in vivo, failed to elicit a VMR. In contrast, electrical stimulation (2–5 Hz, 0.4 ms, 60 V) applied to the rectum reliably elicited VMRs, which were abolished by selective lesioning of the rectal nerves. DiI retrograde labeling from the colorectum (injection sites 9–15 mm from the anus, measured in unstretched preparations) labeled sensory neurons primarily in dorsal root ganglia (DRG) of the lumbosacral region of the spinal cord (L6-S1). In contrast, injection of DiI into the mid to proximal colon (injection sites 30–75 mm from the anus, measured in unstretched preparations) labeled sensory neurons in DRG primarily of the lower thoracic level (T6-L2) of the spinal cord. The visceral pain pathway activated by acute noxious distension of the terminal 15 mm of mouse colorectum is transmitted predominantly, if not solely, through rectal/pelvic afferent nerve fibers to the spinal cord. The sensory neurons of this spinal afferent pathway lie primarily in the lumbosacral region of the spinal cord, between L6 and S1

    Extrinsic primary afferent signalling in the gut

    Get PDF
    Visceral sensory neurons activate reflex pathways that control gut function and also give rise to important sensations, such as fullness, bloating, nausea, discomfort, urgency and pain. Sensory neurons are organised into three distinct anatomical pathways to the central nervous system (vagal, thoracolumbar and lumbosacral). Although remarkable progress has been made in characterizing the roles of many ion channels, receptors and second messengers in visceral sensory neurons, the basic aim of understanding how many classes there are, and how they differ, has proven difficult to achieve. We suggest that just five structurally distinct types of sensory endings are present in the gut wall that account for essentially all of the primary afferent neurons in the three pathways. Each of these five major structural types of endings seems to show distinctive combinations of physiological responses. These types are: 'intraganglionic laminar' endings in myenteric ganglia; 'mucosal' endings located in the subepithelial layer; 'muscular–mucosal' afferents, with mechanosensitive endings close to the muscularis mucosae; 'intramuscular' endings, with endings within the smooth muscle layers; and 'vascular' afferents, with sensitive endings primarily on blood vessels. 'Silent' afferents might be a subset of inexcitable 'vascular' afferents, which can be switched on by inflammatory mediators. Extrinsic sensory neurons comprise an attractive focus for targeted therapeutic intervention in a range of gastrointestinal disorders.Australian National Health and Medical Research Counci

    Mechanotransduction by intraganglionic laminar endings of vagal tension receptors in the guinea-pig oesophagus

    No full text
    Vagal mechanoreceptors to the guinea-pig oesophagus, recorded extracellularly, in vitro, fired spontaneously at 3.3 ± 0.2 Hz, (n = 75, from 57 animals), and had low thresholds to circumferential stretch. In this study, we have investigated whether mechanotransduction by intraganglionic laminar endings (IGLEs) directly relies on mechano-gated ion channels, or whether it is due to chemical activation by neurotransmitters (glutamate or ATP) released from other cells during mechanical distortion. Rapid distortion of focal transduction sites (IGLEs) evoked action potentials with a latency of < 10 ms. Antagonists to ionotropic (AP5, memantine and 6,7-dinitroquinoxaline-2,3-dione (DNQX)) and metabotropic glutamate receptors (N-phenyl-7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxamide (PHCCC) and (RS)-a-methyl-4-phosphono-phenylglycine (MPPG)) did not affect mechano-transduction. Glutamate, NMDA and the selective mGluR group II and III agonists, (2R, 4R)-APDC and l-AP4, had no effect on spontaneous or stretch-induced firing. The P2X purinoreceptor agonist, α,ÎČ-methylene ATP, caused concentration-dependent excitation of vagal mechanoreceptors (EC50 = 22.2 ”m) which was blocked by the non-selective P2 antagonist PPADS (30 ”m). On its own, PPADS affected neither stretch-induced firing nor spontaneous firing. Neither Ca2+-free solution (1 mm EDTA, 3.6 mm Mg2+) solution nor Cd2+ (100 ”m) blocked stretch-induced firing. Thus chemical transmission is not involved in activation of vagal mechanoreceptors. The blocker of stretch-activated channels, Gd3+ (300 ”m), did not inhibit stretch-induced firing. However, benzamil (100 ”m) significantly inhibited spontaneous and distension-evoked firing in a stretch-dependent manner; proportionally greater inhibition was seen with larger stretches. The results suggest that IGLEs of vagal tension receptors directly transduce mechanical stimuli probably via benzamil-sensitive, Gd3+-insensitive, stretch-activated ion channels, and that chemical transmission is not involved in transduction
    corecore