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ABSTRACT  

Pudendal nerve-spinal pathways are involved in urethrogenital sensation, pain and 

sexual activity.  However, details of these pathways and their modulation are unclear. 

We examined spinal pathways activated by the urethrogenital reflex (UGR) and 

visualised by c-Fos immunoreactivity in reflexly activated neurons within spinal cord. 

In anaesthetised female guinea pigs, a balloon was inserted into the urethra and 

inflated with short-repeat or long-continuous distension to activate the UGR. A 

second balloon recorded reflex contractions of the vagina and uterus. Two control 

groups had either no balloon or a vaginal balloon only. Ninety minutes after UGR 

activation, c-Fos immunoreactivity in L3 and S2 spinal segments was examined.  

Reflex activated c-Fos immunoreactivity also was investigated in some animals with 

acute spinal transections at either L4 or T12 levels. There was no significant 

difference in spinal c-Fos expression between the control groups. Short-repeat 

distension reliably induced a UGR and a 2-3 fold increase in c-Fos-expressing 

neurons throughout dorsal, intermediate and lateral spinal grey matter at S2 and about 

two fold increase in superficial dorsal horn at L3. T12 transection had little effect on 

c-Fos expression at either spinal level. However, after L4 transection, UGR 

generation was associated with a 4-6 fold increase in c-Fos-expressing neurons in 

lateral horn and central canal areas at S2, and but only 20-30% increase at L3. Thus, 

UGR activates preganglionic neurons projecting to pelvic viscera in both sacral and 

lumbar spinal cord. The reflex also must activate ascending and descending spinal 

inhibitory circuits that suppress c-Fos-expression in neurons at both sacral and lumbar 

spinal levels. 
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INTRODUCTION 

Female sexual dysfunction (FSD) affects a high proportion of women at some stage in 

their lives (Verit et al., 2006; Jha and Thakar, 2010; Bergeron, 2011). Some elements 

of FSD involve peripheral neural pathways. For example, vulvar vestibulitis 

syndrome (VVS) or dyspareunia can involve hypersensitivity of genital sensory 

nerves, whilst reduced vaginal lubrication ultimately is a failure of autonomic 

secretomotor and vasodilator pathways (Pukall et al., 2005). The spinal cord 

represents the first stage of processing genital sensory input and the final stage in 

generating autonomic motor output to the genital tract (Giraldi, 2004). Furthermore, 

the lumbo-sacral spinal cord has a well known ability to support sexual 

responsiveness at some level of the reflex in the absence of descending central 

control, as seen after spinal lesions (Chapelle, 1980; Sipski et al., 2004). Nevertheless, 

the spinal pathways activated during stimulation of the genital tract, especially in 

females, are poorly known.  

In general, it is not feasible to identify spinal circuits in humans. However, 

spinal circuitry is well conserved across mammalian species, so that pathways 

identified in laboratory mammals are highly likely to have close homologues in 

humans. A spinal reflex response to mechanical stimulation of the urethrogenital 

region, known as urethrogenital reflex (UGR), has been reported in both male and 

female rats (McKenna et al., 1991; Vathy and Marson, 1998; Marson et al., 2003; 

Marson and Gravitt, 2004).
 
The responses to the UGR activation in female animals 

resemble those seen during sexual activity, including significant increases in pelvic 

blood flow and rhythmic contractions of the vagina and uterus (Bohlen et al., 1982a, 

1982b; Sipski, 2001).
 
Afferent input arises from the pudendal nerves and the visceral 

responses themselves are produced by activation of autonomic pathways comprising 
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spinal preganglionic neurons, the hypogastric and pelvic nerves, with final motor 

neurons in the paracervical (anterior pelvic) ganglia (Morris and Gibbins, 1987; 

Keast, 1999; Jobling et al., 2003; Morris et al., 2005a; Wiedey, 2008).  In guinea pigs, 

pudendal nerves project from sacral spinal cord mainly at S2 segment, hypogastric 

from rostral lumbar (eg. L3), pelvic nerves from caudal lumbar and sacral segments 

(Yuan et al., 2011). Most of them contain both afferents and efferents in the nerve 

bundles.  In rats, hypogastric nerves mainly come from T13-L2 segments, pelvic 

nerves from L6 and S1, pudendal nerves from sacral segments (de Groat and Booth, 

1993a).  In human, it may be possible that there are some variations comparing with 

animals, but human most likely conserves a similar anatomical arrangement for these 

pathways (Wesselmann et al., 1997).  Although the UGR has been regarded as a 

surrogate for sexual stimulation, it seems more likely that reflexes activated by 

mechanical stimulation of the urethra, especially its distension, are components of 

pain detection and response pathways.  

In males and females, sacral parasympathetic pathways play a dominant role 

in producing vasodilation to increase blood flow to the reproductive organs (Dail et 

al., 1985; de Groat and Booth, 1993b; Papka and Traurig, 1993; Traurig and Papka, 

1993 Sato et al., 1996; Cai et al., 2008). However, in several species, including 

humans, lumbar sympathetic pathways also can contribute to the change of pelvic 

blood flow and sexual arousal (Chapelle et al., 1980; Fahrenkrug and Ottesen, 1982; 

de Groat and Booth, 1993b; Sato et al., 1996; Sipski et al., 2004 Cai et al., 2008;). 

Indeed, many vasodilator neurons in guinea-pig paracervical ganglia receive their 

dominant preganglionic input from mid-lumbar (L3) spinal cord, often with 

convergent sacral spinal inputs (Jobling et al., 2003; Morris et al., 2005a). 

Expression levels of an immediate-early proto-oncogene protein, c-Fos, in 
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spinal cord neurons are increased by activation of nociceptive sensory neurons, 

providing a valuable tool to identify neurons within spinal nociceptive pathways 

(Morgan et al., 1987; Marson et al., 2003; Marson and Gravitt, 2004; Coggeshall, 

2005; Wiedey et al., 2008; Gao and Ji, 2009; Wang et al., 2010). Indeed, 

immunohistochemical mapping of c-Fos expression has allowed the identification of 

several populations of spinal neurons activated by stimulation of pelvic and pudendal 

nerves as well as the UGR (Marson et al., 2003). This work showed that the UGR 

activates neurons across most of the lumbar and sacral spinal cord, including 

autonomic preganglionic neurons and a wide range of neurons that must process 

different levels of afferent input. Such activation of c-Fos expression by the UGR 

further supports the interpretation that this reflex involves stimulation of nociceptive 

sensory pathways from the urinogenital tract.  

Our recent electrophysiological studies in female guinea pigs demonstrated 

that activation of pudendal sensory nerves stimulates pelvic autonomic neurons 

controlling blood flow to the female genital tract via ascending spinal circuits 

projecting to both sacral and lumbar levels (Yuan et al., 2011). Many of these pelvic 

neurons in guinea pigs also receive descending central inputs from lumbar levels (L3) 

in addition to inputs from the sacral spinal cord (Jobling et al., 2003; Morris et al., 

2005a; Yuan et al., 2011). However, outputs of the lumbar pathways to pelvic 

vasodilator and uterine motor neurons appear to be inhibited by spinal neurons acting 

via GABAA receptors (Yuan et al., 2011). To date, the contributions of these neurons 

to pathways activated by the UGR reflex are not known. Building on our previous 

studies in guinea pigs (which confirm and extend observations made in other species, 

such as rats) (Jobling et al., 2003; Morris et al., 2005a; Yuan et al., 2011; Vilimas et 

al., 2011), we have adapted the UGR model for female guinea-pigs. We used c-Fos 
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immunohistochemistry to identify neurons that are activated by UGR in animals with 

intact spinal cord, and in animals following lesions of the spinal cord at different 

levels. 

 

EXPERIMENTAL PROCEDURES 

Young adult female guinea-pigs (pre-estrous 6-8 weeks old; 250-280 g body weight; 

Hartley-IMVS, Adelaide, Australia) were anesthetised with 50% urethane (up to 

1.8g/kg i.p.) and placed in a prone position on a heating pad to maintain body 

temperature at 37 ºC.  Oxygen was supplied continuously with a facemask during the 

experiment. Urethane provided stable anesthesia to allow for repeated applications of 

stimuli to an animal in vivo and subsequent perfusion of the spinal cord for c-Fos 

immunohistochemistry. Animals were handled gently to avoid any overt activation of 

nociceptors that could increase background c-Fos expression in the spinal cord. 

Control animals were anesthetised but otherwise had no other procedures in order to 

obtain baseline c-Fos expression with these anesthesia and handling conditions. All 

experimental procedures employed in this study were approved by the Flinders 

University Animal Welfare Committee in accordance with national guidelines.  

 

In vivo urethrogenital reflex (UGR) activation to induce spinal c-Fos expression 

Two experimental groups were setup with urethral balloon distension to examine 

reflex-induced c-Fos expression in the spinal cord of anaesthetised animals.  A small 

rubber balloon (urethral balloon: size 3F Fogarty arterial embolectomy catheter, 

Edwards Lifesciences, USA) was inserted into the urethra 1-2 mm away from the 
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external orifice and without stretching the wall of urethra.  The balloon was inflated 

with 120 µl distilled water for 30s every 10 minutes over 90 minutes (short-repeat 

distension) to activate the urethrogenital reflex. The degree of balloon distension was 

controlled to produce only limited increase in the diameter of the urethra. Such 

relatively mild distension was sufficient to induce UGR, which was used as threshold 

volume for urethral distension.  In one group of animals with thoracic cord transection 

(T12, see below), the urethral balloon was inflated continuously for 30 minutes 

(continuous distension) to test for maintained activation of the UGR.  A second 

balloon (vaginal balloon, VB: size 4F Fogarty arterial embolectomy catheter, Edwards 

Lifesciences, USA) was inserted into the area of vagina/lower uterus, but did not 

across the cervix, and then inflated with 200 µl distilled water to detect reflex 

contractions in response to urethral distension.  Different sizes of the balloons used in 

urethra (3F) and vagina (4F) were determined by the sizes of luminal diameters of the 

urethra and vagina.  Unlike the balloon in the urethra, vaginal balloon was distended 

to the level just filling up the lumen without significant stretching the wall of the 

organ, while sufficient to detect any vaginal spontaneous or reflex induced 

contractions. Both balloons were connected to Statham P23XL pressure transducers 

(Statham Medical Instruments, INC, USA) and recorded at 200 Hz sampling with a 

PowerLab/4s hardware (AD Instruments, Sydney, Australia) connected to a Power 

Macintosh computer using Chart version 4.0. Animals were left for a further 90 

minutes under anaesthetic after completion of the stimulation protocol and then 

processed for detection of c-Fos immunoreactivity in the spinal cord. 

At the beginning of each experiment, the threshold pressure in the urethral 

balloon required to elicit the UGR was determined.  Reflex vaginal responses to this 

level of distension were allowed to stabilize before short-repeat or continuous 
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distension protocols were begun. These are the experimental groups (Stimulated) we 

examined for urethral balloon distension to induce reflex responses, which were 

detected by the balloon in vagina. Two control groups were used in these studies: the 

first control group (Control-no VB) had no balloon at all in both urethra and vagina in 

order to see the baseline c-Fos expression without any stimulation which may occur 

when the balloons were present in the lumen of urethra and vagina, while the second 

control group (Control-with VB) had only a vaginal recording balloon to see if there 

was any stimulation effect induced by presence of this balloon in vagina.  

 

Spinal transection  

To examine the involvement of ascending and descending spinal pathways in 

mediating reflex-induced c-Fos expression in spinal cord neurons, a total 35 

anaesthetised animals were subjected to acute spinal cord transection prior to 

activation of the UGR. The region surrounding the thoracic (T12) or lumbar (L4) 

vertebrae of anaesthetised animals was exposed with a dorsal midline incision 

according to the anatomical landmark of the last ribs at T13.  The spinal cord was 

transected with fine scissors in the area of T12 (n = 15) or L4  (n = 20).  Because the 

mismatched level of the arrangement of spinal cord and vertebrae in the guinea pig, 

especially the lower level of the spinal cord, the accuracy of the spinal cord 

transection level was re-examined after removal of vertebral bone to expose the spinal 

cords after the experiments. All experiments with inaccurately transected spinal cords 

were discarded. The exposed areas were then covered with surgical gel foam and the 

incision was closed.  After surgery the animals were allowed to stabilise for 30 

minutes under maintained anaesthesia before stimulating the UGR. The purpose for 

using only 30 minutes post spinal cord transection was to see the acute effect of 
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blocking spinal pathways in these experiments.  After the completion of the 

experiment, anesthetised animals were perfused with fixative (see below) and the 

transected areas of the spinal cord were examined to ensure that complete transection 

of the spinal cord had been achieved at the correct level without any other significant 

damage, such as crushing the cord, spinal root avulsion or haemorrhage. A summary 

of the experimental setup is illustrated in Figure 1. 

 

c-Fos, CGRP, SP, ChAT immunohistochemistry in spinal cord 

Animals remained anesthetised and were perfused (80 mmHg) via the left ventricle 

with 200 ml Dulbecco’s minimal essential medium (DMEM, pH 7.4, Sigma) at 37 ºC, 

followed by 500 ml Zamboni’s fixative (0.5 % picric acid and 2% formaldehyde in 

phosphate buffer 0.1 M; pH 7.0).  Spinal cords from lumbar (L2) to sacral (S3) 

segments were isolated and cut into approximately 5 mm long segments. Segments L3 

and S2 were chosen for analysis, since they correspond to the peak autonomic outputs 

and sensory inputs to and from the pelvic viscera activated in the UGR. All spinal 

samples were stored in the same fixative for at least another 48 hours at 4°C.  The 

tissue was cleared through 80%, 90%, 100% ethanol (twice), xylene (twice), 100%, 

100%, 80%, 50% ethanol, water (0.5 hour each) and then stored in phosphate buffered 

saline with 0.01% sodium azide (PBS: 0.15 M NaCl in 0.01 M sodium phosphate, pH 

7.1). L3 and S2 spinal segments were embedded in polyethylene glycol (PEG; MW = 

1450) and cut transversely in 20 µm serial sections. Every 8th section was collected 

for immunohistochemistry. 

After washing in PBS, free-floating sections were pre-incubated with 10% 

normal donkey serum for 30 minutes and then incubated over 2 nights at room 
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temperature in a humid chamber with antisera against the amino terminal of c-Fos 

protein (SC-54, raised in a rabbit, dilution: 1:600, Santa Cruz Biotechnology).  In two 

experiments, sections were used for multiple labeling immunohistochemistry with a 

mixture of specific antisera against calcitonin gene-related peptide (CGRP) raised in a 

goat (1:1000; Arnel Products 1780, NY, USA), substance P (SP) raised in a rat 

(1:200; Chemicon International MAB356, Temecula, CA, USA) and choline 

acetyltransferase (ChAT) raised in sheep (1:4000; Chemicon). All these antisera are 

well characterised and do not show any significant cross-reactivity with inappropriate 

antigens in guinea-pig tissue (Jobling et al., 2003; Morris and Gibbins, 1987; Morris 

et al., 2005b; Vilimas et al., 2011). The sections were then washed in PBS (3 x 10 

minutes) and incubated for 2 hours with species-specific secondary antibodies raised 

in donkey to rabbit, rat, sheep or goat immunoglobins and coupled with different 

fluorophores (dichlorotriazinylamino fluorescein, DTAF, or fluorescein 

isothiocyanate, FITC; indocarbocyanine 3, Cy3; indodicarbocyanine 5, Cy5; Jackson 

ImmunoResearch Laboratories, West Grove, PA) for double or triple-labeling 

fluorescence.  All antisera were prepared with hypertonic PBS diluent (0.3M NaCl,  

pH 7.1) to minimise non-specific binding to tissue proteins.  

Following further washing in PBS (3 x 10 minutes), tissues were mounted in 

buffered glycerol (2 parts glycerol in 1 part 0.5 M sodium carbonate buffer, pH 8.6) 

and viewed under an Olympus AX70 epifluorescence microscope with highly-

discriminating filter blocks (Chroma Technology, Bellows Falls, VT). Digital images 

of labeled neurons were captured by a Hamamatsu ORCA cooled CCD camera 

(C4742-95, Japan) mounted on an AX70 microscope running AnalySIS acquisition 

software (version 5.0, Olympus Soft Imaging Systems). 
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Data analysis 

To quantitatively measure changes in the number of c-Fos-immunoreactive (-IR) 

neurons in the spinal cord in response to UGR activation, the spinal cord was divided 

into 5 areas: (1) superficial (laminae I/II) and (2) deeper (laminae III-VI) layers of the 

dorsal horn, (3) lateral horn (LH, including intermediolateral (IML) cell columns and 

more medial gray matter), (4) central autonomic nuclei (CC) and (5) ventral horn 

(VH) (Figure 2A).  The number of labeled neurons with strongly c-Fos-IR nuclei was 

counted in each area through the entire 20 µm thickness of each section. On average, 

20 sections were counted at L3 level and 8-10 sections at S2 level for each animal. 

The sum of labeled neurons in all sections counted at each spinal level represents the 

final quantitative data for each animal. Labeled neurons were counted by an observer 

who was blinded to the experiment from which the sections came.  The reliability of 

the counts was checked by recounting a sample of section. 

 

Effects of different stimulation protocols and spinal transections on numbers of c-Fos-

IR neurons detected were compared with multivariate and univariate analyses of 

variance (MANOVA/ANOVA) using the General Linear Model (GLM) procedure of 

SPSS 16.0 for Macintosh (SPSS, Chicago, IL, USA).  Following detection of 

significant main effects or interaction terms in the complete data set (P < 0.05), either 

from the overall analysis of variance or from preplanned single-degree of freedom 

contrasts, pair-wise comparisons of estimated marginal means were made using 

Bonferroni adjustments for multiple comparisons with 95% confidence intervals. The 

total data set consisted of 93 separate neuronal counts for each of the 5 spinal regions 

taken across 18 combinations of experimental variables (ie. a total of 465 sets of 

neuronal counts). Summary data are expressed as mean ± standard error from at least 
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four animals in each variable combination.  

 

RESULTS 

Pressure recordings from an intra-luminal vaginal balloon (VB) without any urethral 

balloon (UB) distension showed spontaneous vaginal contractions in 5 out of 10 

experiments with a mean frequency of 18/hour, ranging from 6 to 60/hour (n = 5). 

Short (30 s) distension of the urethral balloon induced neuronal reflex responses 

recorded as pressure changes in the vaginal balloon (Figure 2Ba). Vaginal pressure 

increased from 0 to 9.6 ± 0.4 hPa (n = 4).  This reflex response was repeatable at 10 

minute intervals. The response includes an initial mechanical artifact followed by a 

rapid rising phase, peak and slow long-lasting recovery phase. The rising, peak and 

recovery phases were abolished by intra-luminal infusion of topical anesthetic (50 µl 

of 4% lidocaine HCl) to the urethra, but not vagina, via an injection cannula in the 

urethra for 50 s indicating their underlying neural origin (Figure 2Ba). The 

component remaining after lidocaine infusion was the mechanical artifact induced by 

inflating the urethral balloon. This artifact was embedded in the initial rising phase 

and peak of the reflex response. Spontaneous contractions of the vagina were 

unaffected by lidocaine, indicating that they were not reflex induced responses and 

probably myogenic in origin (Granina et al., 2014) or perhaps due to local neural 

oscillator (Shafik et al., 2004) or pelvic floor muscle contraction. Continuous 

distension of the urethral wall for 30 minutes induced reflex responses similar to those 

induced by short-duration distension, but with a much longer recovery phase of the 

neuronal component (Figure 2Bb). 

Examination of spinal cord from control animals that had neither a stimulating 
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urethral balloon nor a recording vaginal balloon revealed that only a relatively small 

number of neurons expressed detectable c-Fos-IR at both L3 and S2 spinal levels. 

Occasional labeled cells occurred in all regions of the spinal cord with comparable 

expression levels at L3 and S2 (Figure 3). There was no difference in the overall 

number of c-Fos-IR cells or in their distribution within the spinal cord of animals that 

had only a vaginal recording balloon (P > 0.05 for this protocol effect for each region 

of the spinal cord at each spinal level; ANOVA with preplanned contrasts). Thus, the 

insertion and inflation of the vaginal recording balloon generated no more c-Fos-IR in 

neurons than did the routine preparation of the animals for the experimental 

procedures.  

 

Short-repeat urethral distension 

c-Fos immunoreactivity in intact spinal cord 

In contrast to simply inserting and inflating the vaginal balloon, short-repeat balloon 

distension of the urethra significantly increased the overall number of c-Fos-IR 

neurons in the spinal cord (F(10,144) = 8.6, P < 0.001). However, there were significant 

differences in the changes of numbers of neurons with c-Fos-IR between sacral and 

lumbar levels (F(5,71) = 31.1, P < 0.001). At S2 spinal level, urethral distension 

produced a 2- to 3-fold increase in the number of c-Fos-IR neurons throughout the 

dorsal horn (for example, in superficial dorsal horn layers I/II: control-no VB, 8 ± 2; 

control-with VB, 12 ± 1; stimulated, 27 ± 5. Lateral horn: control-no VB, 5 ± 1; 

control-with VB, 6 ± 1; stimulated, 15± 2. Central canal region: control-no VB, 5 ± 1; 

control-with VB, 5 ± 1; stimulated, 13 ± 3. P < 0.05 for each comparison of 

stimulated condition with controls, n = 5). In contrast, at the L3 level, the same 
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stimulus generated a significant increase in the number of c-Fos-IR cells only in the 

superficial dorsal horn (I/II), where their number was doubled (control-no VB: 5 ± 1; 

control-with VB, 5 ± 1; stimulated, 10 ± 4; P < 0.05 for each comparison). There was 

no significant change in the number of c-Fos-IR neurons in the ventral horn at S2 and 

the remaining areas (III-VI, LH, CC, VH) at L3 (n = 5) (Figure 3). 

 

c-Fos immunoreactivity in T12 transected spinal cord 

Compared with animals with an intact spinal cord, acute spinal cord transection at 

T12 had no consistent effect on the number of spinal neurons expressing c-Fos-IR in 

response to short repeat distension of the urethra.  Thus, the pattern of increase in the 

number of c-Fos-IR neurons at both the L3 and S2 segments was similar in T12 

transected animals and the intact animals (ANOVA with preplanned contrasts and 

pairwise multiple comparisons using Bonferroni correction, P > 0.05 for comparisons 

for each area of the spinal cord, n = 5 transected animals, Figure 4). For example, we 

found that the pattern of increase of spinal neurons expressing c-Fos-IR in superficial 

dorsal horn laminae I/II (control-no VB, 12 ± 2; control-with VB, 17 ± 4; stimulated, 

36 ± 6) and lateral horn (control-no VB, 7 ± 1; control-with VB, 7 ± 3; stimulated, 19 

± 3) at S2 with T12 transection were similar to those found in animals without spinal 

transection (Figure 3). 

 

c-Fos immunoreactivity in L4 transected spinal cord 

In contrast to spinal transection at T12 level, animals with acute spinal transection at 

L4 level, showed a dramatic increase in the number of c-Fos-IR neurons following 
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urethral distension (ANOVA: significant interaction between stimulation protocol and 

transection level, F(20,296) = 2.0, P = 0.008). In particular, there was a 4- to 6-fold 

increase in the number of c-Fos-IR neurons in lateral horn and central canal areas of 

S2 spinal cord (for example, LH: control-no VB, 9 ± 1; control-with VB, 7 ± 2; 

stimulated, 28 ± 3; and CC: control-no VB, 4 ± 1; control-with VB, 4 ± 1; stimulated, 

24 ± 3) and 20-30% increase in the same areas of L3 spinal cord (LH: control-no VB, 

6 ± 1; control-with VB, 6 ± 1; stimulated, 8 ± 1; and CC: control-no VB, 5 ± 1; 

control-with VB, 4 ± 1; stimulated, 7 ± 1). These increases were significantly larger 

than those seen in intact or T12 transected animals (see below for details) (ANOVA 

with preplanned contrasts and pairwise multiple comparisons using Bonferroni 

correction, P < 0.05 for the appropriate comparisons). Compared with intact or T12 

transected animals, spinal cord transection at L4 did not reveal any significant 

increase in the number of c-Fos-IR neurons in superficial laminae (I/II) of lumbar 

cord following urethral distension, indicating that the spinal cord transection at lower 

level abolished the activation of an ascending pathway from sacral to lumbar spinal 

cord (Figure 5). 

Comparing the degree of increase in the number of c-Fos-IR neurons after urethral 

distension, particularly in the CC and LH areas at S2 level, L4 transection caused 

significantly larger increase in the number of c-Fos-IR neurons than intact or T12 

transection group.  For example, when stimulated animals were compared with 

control-with VB, at S2 level of the CC area: there was 611 ± 140% increase in L4 

transected animals; 230 ± 90% increase in T12 transected animals; and 150 ± 40% 

increase in intact animals; at S2 level of the LH area: 410 ± 160% increase in L4 

transected; 171 ± 168% increase in T12 transected; and 204 ± 66% increase in intact) 

(ANOVA with preplanned contrasts and pairwise multiple comparisons using 
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Bonferroni correction, P < 0.05). At L3 level, in both CC and LH areas the degree of 

increase in the number of c-Fos-IR neurons after stimulation is not significantly 

different among the intact, L4 and T12 transected groups (Figure 6). 

  

Continuous urethral distension 

c-Fos immunoreactivity in T12 transected spinal cord 

Long lasting urethral distension significantly increased the number of c-Fos-IR 

neurons in the spinal cord (ANOVA, F(5,28) = 4.3, p = 0.005).  However, the pattern of 

increased c-Fos-IR in different areas of the spinal cord was similar to the change 

induced by the short-repeat stimulation in T12 transected animals (ANOVA, F(5,28) = 

0.8, p = 0.6), which in turn was not different from that seen in intact animals.  This 

result indicated that variation in urethral distension time did not play a crucial role in 

determining the pattern of c-Fos expression (Figure 7). 

 

Multiple labeling immunohistochemistry in spinal cord 

Double or triple labeling immunohistochemistry with antibodies against c-Fos, 

CGRP, SP, ChAT revealed that c-Fos-IR spinal neurons activated by urethral 

distension within lamina I of the superficial dorsal horn were surrounded by a dense 

plexus of varicose fibres with strong immunoreactivity to both SP and CGRP, 

indicating that they were likely to be terminals of peptidergic nociceptors. Neurons 

with c-Fos-IR also were prominent in deeper dorsal horn lamina where they were 

distant from fibres containing SP-IR or CGRP-IR (Figure 8). Many c-Fos–IR neurons 

in the sacral parasympathetic nucleus and lumbar lateral horn and area around the 
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central canal were immunoreactive for ChAT, indicating that they were cholinergic 

autonomic preganglionic neurons (Figure 8). 

 

DISCUSSION 

This study has combined a range of experimental methods, including detection of 

neuronal c-Fos expression with immunohistochemistry, UGR activation by urethra 

distension and selective spinal transection, to take a novel approach to investigate 

UGR pathways in the female guinea pigs. We have found that the urethrogenital 

reflex induced by urethral distension activates spinal preganglionic neurons projecting 

to pelvic viscera through not only sacral levels but also lumbar levels of the spinal 

cord. We also showed the existence of ascending and descending spinal inhibitory 

circuits that suppress c-Fos-expressing neurons at both sacral and lumbar spinal levels 

during UGR activation.  

c-Fos expression at sacral and lumbar spinal cord 

Our data have revealed that the UGR induced by urethral distension increased c-Fos 

expression in several areas of the spinal cord at both lumbar and sacral levels in 

response to both short-repeat and continuous urethral distension. The low background 

levels of c-Fos expression observed in control preparations indicate that in untreated 

animals or in animals simply prepared for the experiment, any activation of sensory 

inputs from the urinogenital tract (or any other region) is insufficient to generate c-

Fos expression in the great majority of dorsal horn neurons. Although the numbers of 

c-Fos labeled neurons in any section were small, differences due to treatment effects 

were consistent and reliable. Indeed, it is likely that relatively few neurons are 
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involved in spinal reflexes at each spinal level. 

The sensory inputs responsible for the enhanced c-Fos expression most likely 

reach the spinal cord via the pudendal nerve which provides most of the sensory 

innervation to the urethra (Vilimas et al., 2011; Wiedey et al., 2008). The increased c-

Fos expression at both sacral and lumbar levels was consistent with our previous 

electrophysiological observations, in which electrical stimulation of pudendal nerves 

activates not only a local pudendal nerve-sacral spinal cord-pelvic nerve pathway but 

also a more cranial pudendal nerve-lumbar spinal cord-hypogastric nerve pathway via 

ascending inter-segmental connections between sacral and lumbar spinal segments 

(Figure 9A) (Yuan et al., 2011).
 
Our data also are consistent with studies in rats 

demonstrating that urethral distension significantly increased c-Fos expression in 

lumbar and thoracic spinal cord, especially at the level of L2-L4 (Marson et al., 

2003).  

We identified several groups of c-Fos expressing neurons in the spinal cord 

following the UGR. One group of activated spinal neurons occurred in superficial 

laminae  (I/II) of both lumbar (L3) and sacral (S2) spinal cord. Many of them were 

surrounded by CGRP-immunoreactive fibres, suggesting that at least some of these 

neurons receive nociceptive inputs from the pudendal nerves and that neuropeptides 

could be involved in the spinal modulation of sexual function
 
(Wilson et al., 2009). 

Neurons expressing c-Fos in deep dorsal horn (laminae III-VI) may receive inputs 

directly from peripheral mechanoceptors. However, they are more likely to be 

interneurons in nociceptive circuits projecting from the superficial dorsal horn 

(Coggeshall, 2005). ChAT-immunoreactive neurons expressing c-Fos in the lateral 

horn and the region around central canal most likely were cholinergic preganglionic 
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neurons (Papka et al., 1998). 

  

Pathways revealed by spinal lesions 

Compared with animals with intact spinal cord or T12 transection, animals with acute 

spinal transection at L4 showed significantly increased c-Fos expression in the CC 

and LH areas of both lumbar and sacral spinal cord in response to the UGR.  These 

changes are most probably the result of acute loss of inputs from adjacent spinal 

levels rather than trophic or epigenetic changes in the properties of the neurons, which 

are very unlikely to have developed in the short time frame of our experiments. Many 

of the labeled neurons expressed ChAT-IR, a marker for cholinergic neurons, and thus 

they are most likely to be autonomic preganglionic neurons (Papka et al., 1998).  

The enhanced expression of c-Fos in L3 preganglionic neurons in L4 

transected animals implies two features of the circuitry (Figure 9B). First, there must 

be direct sensory inputs to these levels activated by the UGR. The most likely 

pathway is via the hypogastric and lumbar splanchnic nerves, as concluded by 

previous studies using different experimental approaches (Papka and Traurig, 1993; 

Traurig and Papka, 1993).  Second, under normal circumstances, there must be some 

ascending spinal inhibition of these neurons in response to the UGR, presumably 

generated by sensory inputs travelling via the pudendal nerve to spinal interneurons at 

sacral spinal levels, which project to lumbar spinal cord as seen in other animal 

species (Hubscher et al., 2010; McMahon and Morrison, 1982). Spinal interneurons 

labelled by different neurochemical markers (calretinin or parvalbumin) in deep 

dorsal horn area have been found to play a role in spinal sensory inhibitory pathway 

(Hughes et al., 2012) and contribute to local spinal neuronal circuitry (Liu et al., 
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2010).  Preganglionic neurons at L3 project to paracervical ganglion neurons that 

have significant vasodilator activity in the pelvic vasculature. These neurons also 

receive convergent preganglionic input from sacral spinal levels, suggesting that the 

lumbar and sacral pathways regulating their activity may mutually inhibit each other. 

Indeed, spinal transection at L4 also enhanced c-Fos expression in sacral 

preganglionic neurons in response to the UGR, implying there must be local 

descending inhibitory circuits as well. These observations are consistent with our 

recent electrophysiological study showing that spinally applied GABAA antagonists 

enhanced activity in splanchnic or hypogastric nerves in response to stimulation of the 

pudendal nerve, as a result of blocking ascending inhibitory pathways from pudendal 

nerve sensory input to preganglionic neurons in lumbar spinal cord (Yuan et al., 

2011). 

The exact physiological function of these ascending and descending inhibitory 

spinal pathways is not clear. One possibility is that they modulate the excitability of 

spinal efferent pathways controlling other pelvic organs for different physiological 

functions, such as urination and defecation, during sexual arousal. For example, it has 

been reported that the myo-electrical activity recorded from rat external urethral 

sphincter was significantly increased when genital stimulation was applied (Pastelín et 

al., 2012). They also suggested that the dorsal nerve, originating from the pudendal 

nerve, innervates both distal urethra and female genitalia.  There are neural pathways 

connecting between these two regions, most likely via spinal cord. This finding also 

indicates that sexual stimulation can activate a pathway to control the urination. 

Because the UGR induced in our study mimics the activities induced by genital 

stimulation the ascending inhibitory pathway found in our study may play a role in 

control of urination through genital-spinal-urethral pathway.  Indeed, sexual 
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dysfunction commonly seen in women was reported also to have urinary incontinence 

(Sutherst, 1979; Laumann et al., 1999; El-Azab et al., 2011). Anatomically, there is a 

considerable degree of overlap and interaction between neural pathways to different 

pelvic organs (eg. rectum and urogenital system) with considerable potential for 

integration or modulation of their activity within the spinal cord (Berkley, 2006; 

Pezzone et al., 2005; Rudick et al., 2007; Ustinova et al., 2006; Ustinova et al., 2010).  

In contrast to the effects of L4 spinal transection, the lack of significant effect 

of acute spinal transection at T12 on c-Fos expression is somewhat surprising (Figure 

9A). Previous studies, mostly in males, have indicated that lumbar preganglionic 

outflow receives both excitatory and inhibitory descending spinal input (de Groat and 

Booth, 1993b; de Groat et al., 1993). In our previous study of female guinea-pigs, 

electrical stimulation of descending spinal tracts above T12 level provides 

predominantly excitatory input to lumbar preganglionic neurons projecting out the 

hypogastric nerve (Yuan et al., 2011). The simplest interpretation of our data is that 

the descending inputs are not tonically active under our experimental conditions. 

Instead, tonic inhibition of preganglionic neurons seems to be arising either from 

lower spinal levels (for lumbar preganglionic neurons) or via local inhibitory circuits 

(for sacral preganglionic neurons). Presumably, descending central inputs play only 

an intermittent role in the control of lower spinal autonomic pathways to the pelvic 

viscera, and may be active only during centrally-generated sexual behaviour. 

However, we cannot rule out the possibility that the c-Fos immunohistochemistry we 

used in this study may not be sufficiently sensitive to detect the effects of blocking 

tonic activity of pathways descending from above T12 level.   

This work provides further evidence for complex sensory pathways from the urethra 

and distal genital tract to lumbar and sacral spinal cord.  These pathways are most 
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likely responsible for the sensations of urethrogenital pain induced by mechanical 

stimulation of the areas innervated by the pudendal nerve, which could occur in the 

presence or absence of sexual activity. Two aspects of our data predict that these 

spinal pathways are related to pain perception: (1) c-Fos expression in superficial 

dorsal horn neurons is up-regulated almost exclusively by nociceptive inputs 

(Coggeshall, 2005); and (2) many of these c-Fos expressing neurons were found to be 

surrounded by CGRP-immunoreactive fibres, which are known to be primarily 

nocicieptive (Morris et al., 2005b). The complexity of the pathways is further 

demonstrated by the presence of three sensory-autonomic pathways regulating pelvic 

organs activity: (1) pudendal nerve inputs to sacral spinal cord with outputs via the 

pelvic nerve; (2) pudendal nerve inputs to sacral spinal cord with ascending pathways 

to lumbar outputs via lumbar splanchnic and hypogastric nerves; and (3) hypogastric 

nerve inputs to lumbar spinal cord with outputs via lumbar splanchnic and hypogastric 

nerves (Dail et al., 1985; Jobling et al., 2003; Morris and Gibbins,1987; Morris et al., 

2005a; Papka and Traurig, 1993; Sato et al., 1996; Traurig and Papka, 1993; Wiedey 

et al., 2008; Yuan et al., 2011). In addition, there is a significant degree of intra-spinal 

modulation within both ascending and descending pathways (Yuan et al., 2011). 

The most common problem affecting the female urethrogenital area is 

infection-induced inflammation with on-going pain (Farage and Galask, 2005). 
 

Independent of any effect of the pain itself on sexual behaviour, our data suggest there 

are likely to be spinal reflex mechanisms that alter autonomic motor control in these 

regions, which in turn are likely to further modulate the experience of sexual activity. 

It is usually assumed that the UGR reflects the activation of reflex activity in normal 

sexual activity (Marson and Gravitt, 2004). However, c-Fos activation of neurons in 

the spinal cord is more likely under conditions of noxious sensory stimulation 

http://www.ncbi.nlm.nih.gov/pubmed?term=%2522Farage%20MA%2522%255BAuthor%255D
http://www.ncbi.nlm.nih.gov/pubmed?term=%2522Galask%20RP%2522%255BAuthor%255D


 24 

(Coggeshall, 2005).
  
If so, most of the c-Fos activation we and others have observed 

after the UGR probably is not the consequence of normal sexual activity but is more 

likely related to noxious stimulation of the urethrogenital region, presumably 

mediated by polymodal mechano-nociceptors. Indeed, our recent 

immunohistochemical analyses revealed complex anatomical relations between the 

endings of presumed low-threshold mechanoceptors and polymodal nociceptors in the 

distal urinogenital tract of females (Vilimas et al., 2011). Dissociating these elements 

experimentally remains a major challenge. 

It is clear that both lumbar and sacral spinal cord act as centres for processing 

sensory information from the pelvic and urethrogenital regions.  As details of these 

spinal pathways emerge, new strategies may develop to understand and potentially 

treat patients with lower cord spinal injury. Although the damaged spinal cord is 

unlikely to regain its normal physiological function in the detection and regulation of 

urethrogenital activity, compensatory nerve pathways may well be candidates for 

targeted activation after injury. In particular, focusing attention on the lumbar 

sympathetic pathways which play an important role in control of pelvic blood flow 

and sexual arousal
 
could be most beneficial (Cai et al., 2008; Chapelle et al., 1980; 

Dail et al., 1985; de Groat and Booth, 1993b; Fahrenkrug and Ottesen, 1982; Sipski et 

al., 2004). 

 

CONCLUSIONS 

This work provides new evidence that urethrogenital reflex induced by urethral 

distension activates preganglionic neurons projecting to pelvic viscera in not only 

sacral but also lumbar spinal cord. The reflex also must activate intra-spinal ascending 
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and descending inhibitory circuits that suppress c-Fos-expression in neurons at both 

sacral and lumbar spinal levels.  
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FIGURE CAPTIONS 

Figure 1: Diagram of proposed spinal pathways to be examined during the activation 

of the urethrogenital reflex (UGR) and the locations of spinal cord transection in 

anaesthetised female guinea-pigs. The spinal reflex pathways projecting to the 

paracervical ganglia (PG, filled circles) controlling the pelvic organs were examined 

by detection of reflex contraction in vagina/uterine during urethral distension. 

Descending spinal and ascending pudendal-lumbar spinal pathways activate 

sympathetic preganglionic neurons (filled circle) projecting via L3 lumbar splanchnic 

nerves (LSN), the inferior mesenteric ganglion (IMG) and hypogastric nerves (HN) to 

the paracervical ganglia. Sacral spinal output to the paracervical ganglia is via 

parasympathetic preganglionic neurons projecting out the pelvic nerve (PN). Most of 

HN, PN and pudendal nerves project to the peripheral from more than one spinal 

segment. For example in guinea pigs, pudendal nerves project from sacral spinal cord 

mainly at S2, S3 segment, hypogastric from rostral lumbar (eg. L3), pelvic nerves 

from caudal lumbar and sacral segments.  Spinal transection at T12 was used to block 

descending central inputs (solid lines with arrows) to lumbar and sacral cord and also 

ascending sensory inputs to supra-spinal levels and brain. In addition to the effect of 

T12 spinal transection, transection at L4 was also used to interrupt spinal connections 

(the solid line with arrow for descending and the broken lines with arrow for 

ascending) between lumbar and sacral cord and to reveal the underlying pathways 

connecting two spinal levels.  

 

Figure 2. A. Cross section of L3 spinal cord of female guinea pig illustrating the 

areas in which c-Fos-IR neurons were identified and counted.  Left side shows the 

laminae of the spinal cord; right side shows the areas used for analysis.  SDH, 
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superficial dorsal horn; DDH, deep dorsal horn; LH, lateral horn including 

intermediolateral (IML) cell columns and more medial gray matter; CC, central canal; 

VH, ventral horn.  B. Example of urethrogenital reflex responses recorded from a 

vaginal balloon induced in vivo by short repeat (a) and continuous (b) urethral 

distensions in anaesthetized young female guinea pig. (a) Reflex contraction of the 

vagina (upper trace) was induced by urethral wall distension 30 s in duration (lower 

trace).  The reflex response comprised with initial rapid rising-phase (see arrow), peak 

and long-lasting recovery phase, All of which were abolished by intra-luminal 

infusion of topical anesthetic (4% lidocaine HCl) for 50 s. The remaining component 

after anaesthetic infusion is the mechanical artifact from inflating the urethral balloon, 

which was embedded in the initial rising phase and peak of the reflex response.  The 

spontaneous contraction is unaffected by lidocaine indicating its non-reflex induced 

response. (b) Reflex response of the vagina (upper trace) induced by continuous 

distension of the urethral wall for 30 minutes (lower trace).  The reflex response is 

similar to the response induced by short duration distension, but with a much longer 

neuronal component.   

 

Figure 3. Example of c-Fos immunohistochemistry in spinal cord sections (A) and 

the distribution of c-Fos-IR neurons (B) in animal with short-repeat urethral 

distension but no spinal cord transection. A: c-Fos-IR neurons in superficial dorsal 

horn (laminae I/II) of S2 spinal cord (arrows). Compared with control (top), UGR 

stimulation (bottom) significantly increased the number of c-Fos-IR neurons in these 

areas. Solid lines mark the edge of the sections, broken lines mark the margins of grey 

matter.  B: Group data (mean ± S.E, n = 5 animals) show that a significant increase 

was found in most areas at S2, but only in laminae I/II at L3 (ANOVA, p < 0.05). * 



 28 

Significant increase due to stimulation compared with controls with or without 

presence of balloon in vagina (VB). There is no difference between the two control 

groups.  These labeled neurons include spinal cord sensory and preganglionic 

neurons. n = number of animals examined. Calibration bar in A: 100 µm. 

 

Figure 4. Example of c-Fos immunohistochemistry in spinal cord sections (A) and 

the distribution of c-Fos-labeled neurons (B) in a T12 transected animal with short-

repeat urethral distension. A: c-Fos-IR neurons in superficial dorsal horn (laminae 

I/II) of S2 spinal cord (arrows). Compared with control (top), UGR stimulation 

(bottom) significantly increased the number of c-Fos-IR neurons in these areas in T12 

transected animal. Solid lines mark the edge of the sections, broken lines mark the 

margins of grey matter. B: Group data (mean ± S.E) from T12 transected animals 

show that the increase in c-Fos-IR neurons induced by UGR at S2 and L3 was similar 

to that in spinal cord intact animals showing in Figure 3.  * Significant increase due to 

stimulation compared with controls with or without presence of balloon in vagina 

(VB; ANOVA, p < 0.05).  These labeled neurons include spinal cord sensory and 

preganglionic neurons. n = number of animals examined. Calibration bar in A: 100 

µm. 

 

Figure 5. Example of c-Fos immunohistochemistry in spinal cord sections (A) and 

the distribution of c-Fos-IR neurons (B) in an L4 transected animal with short-repeat 

urethral distension. A: c-Fos-IR neurons in the grey matter of LH (arrows) of S2 

spinal cord. Compared with control (top), UGR stimulation (bottom) significantly 

increased the number of c-Fos-IR neurons in LH at S2 level.  B: Group data (mean ± 
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S.E) from L4 transected animals show that the pattern of the increase induced by 

UGR at S2 was similar to that in animals without spinal cord transection.  With the 

exception in the regions of CC and LH the increase was statistically much greater than 

that in animals with or without spinal cord transected at T12 (see Figure 3B & 4B). * 

Significant increase (ANOVA, p < 0.05). n = number of animals examined. 

Calibration bar in A: 100 µm. 

 

Figure 6. Comparison among three groups of L4, T12 spinal transection and intact 

animals for the increase in the number of c-Fos-IR neurons in the CC and LH areas 

after urethral stimulation. Top panel: at S2 level L4 transection caused significantly 

larger increase (between stimulated and control-with VB) in the number of c-Fos-IR 

neurons in both CC and LH areas than those seen in T12 transection or intact (no 

transection) groups. Bottom panel: at L3 level the increase in the number of c-Fos-IR 

neurons in both CC and LH areas after L4 spinal transection was small to T12 

transection or intact groups and the difference among the three groups was not 

statistically significant. * Significant increase (ANOVA, p < 0.05). n = number of 

animals examined. 

 

Figure 7.  Distribution of c-Fos-IR neurons in spinal cord with continuous urethral 

distension for 30 minutes in a T12 transected animal. Group data (mean ± S.E) show 

that long lasting distension also induced a significant increase (ANOVA, p < 0.05) in 

the number of c-Fos-IR neurons in most areas examined at S2 and in laminae I/II at 

L3 in T12 transected spinal cord. The increase in different spinal areas was similar to 

that with the short-repeat distension in T12 transected animals (see Figure 4). n = 
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number of animals examined. 

 

Figure 8.  Example of multiple labeling immunohistochemistry in spinal cord 

sections after urethrogenital reflex activation.  A and B: Triple labeling 

immunohistochemistry with antibodies against c-Fos, CGRP and SP revealed that 

many reflex activated sacral spinal neurons with c-Fos immunoreactivity in nuclei 

(red, indicated with arrow heads) were found in superficial dorsal horn (see B, photo 

taken in the area was marked with 
x
 in A) and surrounded by fibres with strong 

immunoreactivity to SP (green) and CGRP (blue).  These spinal neurons most likely 

processing UGR sensory inputs.  C and D:  c-Fos labeled spinal neurons (red) in 

lumbar lateral horn (area marked with * in A) were immunoreactive to ChAT (green 

with arrows).  These spinal neurons are autonomic cholinergic preganglionic neurons 

activated within the UGR pathways. Examples of photographs (A, B, C, D) were 

taken from different sections of the preparation.  Calibration bar: 200 µm for A; 100 

µm for B, C and D.   

 

Figure 9. Summary of proposed spinal reflex pathways projecting to the paracervical 

ganglia (PG, filled circles) controlling the pelvic organs. Sensory pathways are 

indicated by solid double lines; intra-spinal pathways by dashed lines; descending 

central pathways by dashed double lines. Excitatory connections indicated by arrows; 

inhibitory connections by dotted lines capped by bars. A: Sensory fibres in the 

pudendal nerve (PudN) activated by urethral distension stimulate preganglionic 

neurons projecting to pelvic viscera, not only at sacral spinal levels but also at lumbar 

spinal levels, mainly by an ascending intra-spinal pathway (single dashed lines), with 



 31 

potential additional sensory input directly via the hypogastric nerve (HN).  The 

lumbar pathways activate sympathetic preganglionic neurons, projecting via L3 

lumbar splanchnic nerves (LSN), inferior mesenteric ganglion (IMG) and hypogastric 

nerves to paracervical ganglia (PG). Sacral pathways send spinal output to PG via 

spinal parasympathetic preganglionic neurons projecting out the pelvic nerve (PN). 

Descending spinal pathways from brain or other supra-spinal level (dashed double 

lines) did not have a strong influence on UGR as shown by the lack of significant 

effect of T12 spinal transection. B: UGR also activates local spinal inhibitory circuits 

(dotted lines) that suppress c-Fos expression in spinal preganglionic neurons 

projecting from both lumbar and sacral levels to the pelvic viscera. These local spinal 

inhibitory circuits include ascending (from sacral to lumbar) and descending (from 

lumbar to sacral) pathways.  
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