807 research outputs found

    T-duality and Generalized Kahler Geometry

    Full text link
    We use newly discovered N = (2, 2) vector multiplets to clarify T-dualities for generalized Kahler geometries. Following the usual procedure, we gauge isometries of nonlinear sigma-models and introduce Lagrange multipliers that constrain the field-strengths of the gauge fields to vanish. Integrating out the Lagrange multipliers leads to the original action, whereas integrating out the vector multiplets gives the dual action. The description is given both in N = (2, 2) and N = (1, 1) superspace.Comment: 14 pages; published version: some conventions improved, minor clarification

    An Alternative Topological Field Theory of Generalized Complex Geometry

    Full text link
    We propose a new topological field theory on generalized complex geometry in two dimension using AKSZ formulation. Zucchini's model is AA model in the case that the generalized complex structuredepends on only a symplectic structure. Our new model is BB model in the case that the generalized complex structure depends on only a complex structure.Comment: 29 pages, typos and references correcte

    Reduction and construction of Poisson quasi-Nijenhuis manifolds with background

    Get PDF
    We extend the Falceto-Zambon version of Marsden-Ratiu Poisson reduction to Poisson quasi-Nijenhuis structures with background on manifolds. We define gauge transformations of Poisson quasi-Nijenhuis structures with background, study some of their properties and show that they are compatible with reduction procedure. We use gauge transformations to construct Poisson quasi-Nijenhuis structures with background.Comment: to appear in IJGMM

    Topological twisted sigma model with H-flux revisited

    Full text link
    In this paper we revisit the topological twisted sigma model with H-flux. We explicitly expand and then twist the worldsheet Lagrangian for bi-Hermitian geometry. we show that the resulting action consists of a BRST exact term and pullback terms, which only depend on one of the two generalized complex structures and the B-field. We then discuss the topological feature of the model.Comment: 16 pages. Appendix adde

    AKSZ construction from reduction data

    Full text link
    We discuss a general procedure to encode the reduction of the target space geometry into AKSZ sigma models. This is done by considering the AKSZ construction with target the BFV model for constrained graded symplectic manifolds. We investigate the relation between this sigma model and the one with the reduced structure. We also discuss several examples in dimension two and three when the symmetries come from Lie group actions and systematically recover models already proposed in the literature.Comment: 42 page

    A heterotic sigma model with novel target geometry

    Full text link
    We construct a (1,2) heterotic sigma model whose target space geometry consists of a transitive Lie algebroid with complex structure on a Kaehler manifold. We show that, under certain geometrical and topological conditions, there are two distinguished topological half--twists of the heterotic sigma model leading to A and B type half--topological models. Each of these models is characterized by the usual topological BRST operator, stemming from the heterotic (0,2) supersymmetry, and a second BRST operator anticommuting with the former, originating from the (1,0) supersymmetry. These BRST operators combined in a certain way provide each half--topological model with two inequivalent BRST structures and, correspondingly, two distinct perturbative chiral algebras and chiral rings. The latter are studied in detail and characterized geometrically in terms of Lie algebroid cohomology in the quasiclassical limit.Comment: 83 pages, no figures, 2 references adde

    Deformation Theory of Holomorphic Vector Bundles, Extended Conformal Symmetry and Extensions of 2D Gravity

    Full text link
    Developing on the ideas of R. Stora and coworkers, a formulation of two dimensional field theory endowed with extended conformal symmetry is given, which is based on deformation theory of holomorphic and Hermitian spaces. The geometric background consists of a vector bundle EE over a closed surface ÎŁ\Sigma endowed with a holomorphic structure and a Hermitian structure subordinated to it. The symmetry group is the semidirect product of the automorphism group Aut(E){\rm Aut}(E) of EE and the extended Weyl group Weyl(E){\rm Weyl}(E) of EE and acts on the holomorphic and Hermitian structures. The extended Weyl anomaly can be shifted into an automorphism chirally split anomaly by adding to the action a local counterterm, as in ordinary conformal field theory. The dependence on the scale of the metric on the fiber of EE is encoded in the Donaldson action, a vector bundle generalization of the Liouville action. The Weyl and automorphism anomaly split into two contributions corresponding respectively to the determinant and projectivization of EE. The determinant part induces an effective ordinary Weyl or diffeomorphism anomaly and the induced central charge can be computed.Comment: 49 pages, plain TeX. A number of misprints have been correcte

    The Lie algebroid Poisson sigma model

    Full text link
    The Poisson--Weil sigma model, worked out by us recently, stems from gauging a Hamiltonian Lie group symmetry of the target space of the Poisson sigma model. Upon gauge fixing of the BV master action, it yields interesting topological field theories such as the 2--dimensional Donaldson-Witten topological gauge theory and the gauged A topological sigma model. In this paper, generalizing the above construction, we construct the Lie algebroid Poisson sigma model. This is yielded by gauging a Hamiltonian Lie groupoid symmetry of the Poisson sigma model target space. We use the BV quantization approach in the AKSZ geometrical version to ensure consistent quantization and target space covariance. The model has an extremely rich geometry and an intricate BV cohomology, which are studied in detail.Comment: 52 pages, Late

    Gauging the Poisson sigma model

    Full text link
    We show how to carry out the gauging of the Poisson sigma model in an AKSZ inspired formulation by coupling it to the a generalization of the Weil model worked out in ref. arXiv:0706.1289 [hep-th]. We call the resulting gauged field theory, Poisson--Weil sigma model. We study the BV cohomology of the model and show its relation to Hamiltonian basic and equivariant Poisson cohomology. As an application, we carry out the gauge fixing of the pure Weil model and of the Poisson--Weil model. In the first case, we obtain the 2--dimensional version of Donaldson--Witten topological gauge theory, describing the moduli space of flat connections on a closed surface. In the second case, we recover the gauged A topological sigma model worked out by Baptista describing the moduli space of solutions of the so--called vortex equations.Comment: 49 pages, no figures. Typos corrected. Presentation improve
    • 

    corecore