140,052 research outputs found

    Superconducting pairing of interacting electrons: implications from the two-impurity Anderson model

    Full text link
    We study the non-local superconducting pairing of two interacting Anderson impurities, which has an instability near the quantum critical point from the competition between the Kondo effect and an antiferromagnetic inter-impurity spin exchange interaction. As revealed by the dynamics over the whole energy range, the superconducting pairing fluctuations acquire considerable strength from an energy scale much higher than the characteristic spin fluctuation scale while the low energy behaviors follow those of the staggered spin susceptibility. We argue that the glue to the superconducting pairing is not the spin fluctuations, but rather the effective Coulomb interaction. On the other hand, critical spin fluctuations in the vicinity of quantum criticality are also crucial to a superconducting pairing instability, by preventing a Fermi liquid fixed point being reached to keep the superconducting pairing fluctuations finite at low energies. A superconducting order, to reduce the accumulated entropy carried by the critical degrees of freedom, may arise favorably from this instability.Comment: 6 pages, 2 figure

    Game Theory Meets Network Security: A Tutorial at ACM CCS

    Full text link
    The increasingly pervasive connectivity of today's information systems brings up new challenges to security. Traditional security has accomplished a long way toward protecting well-defined goals such as confidentiality, integrity, availability, and authenticity. However, with the growing sophistication of the attacks and the complexity of the system, the protection using traditional methods could be cost-prohibitive. A new perspective and a new theoretical foundation are needed to understand security from a strategic and decision-making perspective. Game theory provides a natural framework to capture the adversarial and defensive interactions between an attacker and a defender. It provides a quantitative assessment of security, prediction of security outcomes, and a mechanism design tool that can enable security-by-design and reverse the attacker's advantage. This tutorial provides an overview of diverse methodologies from game theory that includes games of incomplete information, dynamic games, mechanism design theory to offer a modern theoretic underpinning of a science of cybersecurity. The tutorial will also discuss open problems and research challenges that the CCS community can address and contribute with an objective to build a multidisciplinary bridge between cybersecurity, economics, game and decision theory

    Analytical modeling of open-Circuit air-Gap field distributions in multisegment and multilayer interior permanent-magnet machines

    Get PDF
    We present a simple lumped magnetic circuit model for interior permanent-magnet (IPM) machines with multisegment and multilayer permanent magnets. We derived analytically the open-circuit air-gap field distribution, average air-gap flux density, and leakage fluxes. To verify the developed models and analytical method, we adopted finite-element analysis (FEA). We show that for prototype machines, the errors between the FEA and analytically predicted results are 1% for multisegment IPM machines and 2% for multilayer IPM machines. By utilizing the developed lumped magnetic circuit models, the IPM machines can be optimized for maximum fundamental and minimum total harmonic distortion of the air-gap flux density distribution

    Spin-dependent Fano resonance induced by conducting chiral helimagnet contained in a quasi-one-dimensional electron waveguide

    Full text link
    Fano resonance appears for conduction through an electron waveguide containing donor impurities. In this work, we consider the thin-film conducting chiral helimagnet (CCH) as the donor impurity in a one-dimensional waveguide model. Due to the spin spiral coupling, interference between the direct and intersubband transmission channels gives rise to spin-dependent Fano resonance effect. The spin-dependent Fano resonance is sensitively dependent on the helicity of the spiral. By tuning the CCH potential well depth and the incident energy, this provides a potential way to detect the spin structure in the CCH.Comment: 14 pages, 6 figure

    Performance Evaluation of Distributed-Antenna Communications Systems Using Beam-Hopping

    No full text
    Digital beamforming (DBF) techniques are capable of improving the performance of communications systems significantly. However, if the transmitted signals are conflicted with strong interference, especially, in the direction of the transmitted beams , these directional jamming signals will severely degrade the system performance. In order to efficiently mitigate the interference of the directional jammers, in this contribution a beam-hopping (BH) communications scheme is proposed. In the proposed BH communications scheme, only one pair of the beams is used for transmission and it hops from one to the next according to an assigned BH pattern. In this contribution a range of expressions in terms of the average SINR performance have been derived, when both the uplink and downlink are considered. The average SINR performance of the proposed BH scheme and that of the conventional single-beam (SB) as well as multiple-beam (MB) assisted beam-processing schemes have been investigated. Our analysis and results show that the proposed BH scheme is capable of efficiently combating the directional jamming, with the aid of utilizing the directional gain of the beams generated by both the transmitter and the receiver. Furthermore, the BH scheme is capable of reducing the intercept probability of the communications. Therefore, the proposed BH scheme is suitable for communications, when several distributed antenna arrays are available around a mobile

    Joint Dynamic Radio Resource Allocation and Mobility Load Balancing in 3GPP LTE Multi-Cell Network

    Get PDF
    Load imbalance, together with inefficient utilization of system resource, constitute major factors responsible for poor overall performance in Long Term Evolution (LTE) network. In this paper, a novel scheme of joint dynamic resource allocation and load balancing is proposed to achieve a balanced performance improvement in 3rd Generation Partnership Project (3GPP) LTE Self-Organizing Networks (SON). The new method which aims at maximizing network resource efficiency subject to inter-cell interference and intra-cell resource constraints is implemented in two steps. In the first step, an efficient resource allocation, including user scheduling and power assignment, is conducted in a distributed manner to serve as many users in the whole network as possible. In the second step, based on the resource allocation scheme, the optimization objective namely network resource efficiency can be calculated and load balancing is implemented by switching the user that can maximize the objective function. Lagrange Multipliers method and heuristic algorithm are used to resolve the formulated optimization problem. Simulation results show that our algorithm achieves better performance in terms of user throughput, fairness, load balancing index and unsatisfied user number compared with the traditional approach which takes resource allocation and load balancing into account, respectively
    corecore