103,097 research outputs found

    3-D Microwave Imaging for Breast Cancer

    Get PDF
    We introduce a novel microwave imaging technique for breast cancer detection. Our approach provides a one-pass inverse image solution, which is completely new and unprecedented, unrelated to tomography or radar-based algorithms, and unburdened by the optimization toil which lies at the heart of numerical schemes. It operates effectively at a single frequency, without requiring the bandwidth of radar techniques. Underlying this new method is our unique Field Mapping Algorithm (FMA), which transforms electromagnetic fields acquired upon one surface, be it through outright measurement or some auxiliary computation, into those upon another in an exact sense

    A Computational Study Of The Role Of Spatial Receptive Field Structure In Processing Natural And Non-Natural Scenes

    Get PDF
    The center-surround receptive field structure, ubiquitous in the visual system, is hypothesized to be evolutionarily advantageous in image processing tasks. We address the potential functional benefits and shortcomings of spatial localization and center-surround antagonism in the context of an integrate-and-fire neuronal network model with image-based forcing. Utilizing the sparsity of natural scenes, we derive a compressive-sensing framework for input image reconstruction utilizing evoked neuronal firing rates. We investigate how the accuracy of input encoding depends on the receptive field architecture, and demonstrate that spatial localization in visual stimulus sampling facilitates marked improvements in natural scene processing beyond uniformly-random excitatory connectivity. However, for specific classes of images, we show that spatial localization inherent in physiological receptive fields combined with information loss through nonlinear neuronal network dynamics may underlie common optical illusions, giving a novel explanation for their manifestation. In the context of signal processing, we expect this work may suggest new sampling protocols useful for extending conventional compressive sensing theory

    Gravitational lensing statistical properties in general FRW cosmologies with dark energy component(s): analytic results

    Get PDF
    Various astronomical observations have been consistently making a strong case for the existence of a component of dark energy with negative pressure in the universe. It is now necessary to take the dark energy component(s) into account in gravitational lensing statistics and other cosmological tests. By using the comoving distance we derive analytic but simple expressions for the optical depth of multiple image, the expected value of image separation and the probability distribution of image separation caused by an assemble of singular isothermal spheres in general FRW cosmological models with dark energy component(s). We also present the kinematical and dynamical properties of these kinds of cosmological models and calculate the age of the universe and the distance measures, which are often used in classical cosmological tests. In some cases we are able to give formulae that are simpler than those found elsewhere in the literature, which could make the cosmological tests for dark energy component(s) more convenient.Comment: 14 pages, no figure, Latex fil

    Gravitational Lensing Statistics as a Probe of Dark Energy

    Get PDF
    By using the comoving distance, we derive an analytic expression for the optical depth of gravitational lensing, which depends on the redshift to the source and the cosmological model characterized by the cosmic mass density parameter Ωm\Omega_m, the dark energy density parameter Ωx\Omega_x and its equation of state ωx=px/ρx\omega_x = p_x/\rho_x. It is shown that, the larger the dark energy density is and the more negative its pressure is, the higher the gravitational lensing probability is. This fact can provide an independent constraint for dark energy.Comment: 9 pages, 2 figure
    corecore