11,112 research outputs found
Assessing Ageing Condition of Mineral Oil-Paper Insulation by Polarization/Depolarization Current
Accurately assessing the ageing status of oil-paper insulation in transformer is essential and important. Polarization and Depolarization Current (PDC) technique is effective in assessing the condition of oil-paper insulation system. Though the PDC behaviour of mineral oil-paper insulation has been widely investigated, there is no report about how to make the quantitative analysis of mineral oil-paper insulation ageing condition by PDC. The PDC characteristics of mineral oil-paper insulation samples were investigated over the ageing period at 110°C. A new method for assessing the ageing condition of mineral oil-paper insulation by calculating the depolarization charge quantity was proposed. Results show that the depolarization charge quantity of mineral oil-paper insulation sample is very sensitive to its ageing condition. The stable depolarization charge quantity could be used to predict the ageing condition of mineral oil-paper insulation
Cosmological dynamics of scalar fields with O(N) symmetry
In this paper, we study the cosmological dynamics of scalar fields with O(N)
symmetry in general potentials. We compare the phase space of the dynamical
systems of the quintessence and phantom and give the conditions for the
existence of various attractors as well as their cosmological implications. We
also show that the existence of tracking attractor in O(N) phantom models
require the potential with , which makes the models with
exponential potential possess no tracking attractor.Comment: 9 pages, 4 figures; Replaced with the version to be published in
Classical and Quantum Gravity. Reference adde
CMBR Constraint on a Modified Chaplygin Gas Model
In this paper, a modified Chaplygin gas model of unifying dark energy and
dark matter with exotic equation of state
which can also explain the recent accelerated expansion of the universe is
investigated by the means of constraining the location of the peak of the CMBR
spectrum. We find that the result of CMBR measurements does not exclude the
nonzero value of parameter , but allows it in the range .Comment: 4 pages, 3 figure
A fuzzy domain adaptation method based on self-constructing fuzzy neural network
© 2014 by World Scientific Publishing Co. Pte. Ltd. All rights reserved. Domain adaptation addresses the problem of how to utilize a model trained in the source domain to make predictions for target domain when the distribution between two domains differs substantially and labeled data in target domain is costly to collect for retraining. Existed studies are incapable to handle the issue of information granularity, in this paper, we propose a new fuzzy domain adaptation method based on self-constructing fuzzy neural network. This approach models the transferred knowledge supporting the development of the current models granularly in the form of fuzzy sets and adapts the knowledge using fuzzy similarity measure to reduce prediction error in the target domain
The Physical Connections Among IR QSOs, PG QSOs and Narrow-Line Seyfert 1 Galaxies
We study the properties of infrared-selected QSOs (IR QSOs),
optically-selected QSOs (PG QSOs) and Narrow Line Seyfert 1 galaxies (NLS1s).
We compare their properties from the infrared to the optical and examine
various correlations among the black hole mass, accretion rate, star formation
rate and optical and infrared luminosities. We find that the infrared excess in
IR QSOs is mostly in the far infrared, and their infrared spectral indices
suggest that the excess emission is from low temperature dust heated by
starbursts rather than AGNs. The infrared excess is therefore a useful
criterion to separate the relative contributions of starbursts and AGNs. We
further find a tight correlation between the star formation rate and the
accretion rate of central AGNs for IR QSOs. The ratio of the star formation
rate and the accretion rate is about several hundred for IR QSOs, but decreases
with the central black hole mass. This shows that the tight correlation between
the stellar mass and the central black hole mass is preserved in massive
starbursts during violent mergers. We suggest that the higher Eddington ratios
of NLS1s and IR QSOs imply that they are in the early stage of evolution toward
classical Seyfert 1's and QSOs, respectively.Comment: 32 pages, 6 figures, accepted by Ap
Beyond Counting: New Perspectives on the Active IPv4 Address Space
In this study, we report on techniques and analyses that enable us to capture
Internet-wide activity at individual IP address-level granularity by relying on
server logs of a large commercial content delivery network (CDN) that serves
close to 3 trillion HTTP requests on a daily basis. Across the whole of 2015,
these logs recorded client activity involving 1.2 billion unique IPv4
addresses, the highest ever measured, in agreement with recent estimates.
Monthly client IPv4 address counts showed constant growth for years prior, but
since 2014, the IPv4 count has stagnated while IPv6 counts have grown. Thus, it
seems we have entered an era marked by increased complexity, one in which the
sole enumeration of active IPv4 addresses is of little use to characterize
recent growth of the Internet as a whole.
With this observation in mind, we consider new points of view in the study of
global IPv4 address activity. Our analysis shows significant churn in active
IPv4 addresses: the set of active IPv4 addresses varies by as much as 25% over
the course of a year. Second, by looking across the active addresses in a
prefix, we are able to identify and attribute activity patterns to network
restructurings, user behaviors, and, in particular, various address assignment
practices. Third, by combining spatio-temporal measures of address utilization
with measures of traffic volume, and sampling-based estimates of relative host
counts, we present novel perspectives on worldwide IPv4 address activity,
including empirical observation of under-utilization in some areas, and
complete utilization, or exhaustion, in others.Comment: in Proceedings of ACM IMC 201
First-principles study of native point defects in Bi2Se3
Using first-principles method within the framework of the density functional
theory, we study the influence of native point defect on the structural and
electronic properties of BiSe. Se vacancy in BiSe is a double
donor, and Bi vacancy is a triple acceptor. Se antisite (Se) is always
an active donor in the system because its donor level ((+1/0))
enters into the conduction band. Interestingly, Bi antisite(Bi) in
BiSe is an amphoteric dopant, acting as a donor when
0.119eV (the material is typical p-type) and as an acceptor when
0.251eV (the material is typical n-type). The formation energies
under different growth environments (such as Bi-rich or Se-rich) indicate that
under Se-rich condition, Se is the most stable native defect independent
of electron chemical potential . Under Bi-rich condition, Se vacancy
is the most stable native defect except for under the growth window as
0.262eV (the material is typical n-type) and
-0.459eV(Bi-rich), under such growth windows one
negative charged Bi is the most stable one.Comment: 7 pages, 4 figure
- …