236 research outputs found

    Sociological Studies on "Maturity" of Society

    Get PDF
    発展や進歩の概念はつねにアンビバレントな意味を含んでいる。というのは、それらは未来によりよい状態を想定し、人や社会に希望を与える一方で、今われわれが生きている現在を未来への単なる途上として位置づけ、未来の幸福に資する限りで有意義であるような位置に押しとどめるからである。「成熟した社会」であると言われる現代にあって、「現在」がこのような貧しい意義しか持っていないとしたら、その「成熟」はことばのまやかしである。経済の成長に希望を託すことができない時代である今こそ「社会の成熟」を考える好機である。この論文では第2章から第5章まで、4人の研究者が「成熟」に関して考察している。第2章は、現代社会と個人における「成熟」概念の困難と希望を、理論的な側面から考察している。第3章は、戦後教育思想の浸透に伴って忘れられてきたもの、すなわち「暴力」の問題を事例に基づいて考察した。第4章は自伝的エピソード記憶の再生にかかわる性差と抑うつ気分の影響を実験によって調べ、検証した。第5章は、震災復興支援の経験から、物よりも社会関係資本の構築が支援策としては重要であることを論じている。The concept of development or progress implies an ambivalent situation, for it supposes a better situation in the future which gives us \u27hope\u27, on the one hand, and at the same time, it places \u27the present time\u27 we live in as just a process to the future which is significant insofar as it contributes to it, on the other hand. Although some people call our today\u27s society a \u27mature society\u27, it cannot be so if \u27the present time\u27 has just a poor significance in itself like that. In times like today when we have less hope in the future than before, we need to consider and discuss some important topics concerning the \u27maturity\u27 of society. In this article, the four authors focused on four aspects of the \u27maturity\u27 of society. Chapter 2 gave a theoretical consideration on both difficulties and possibilities of \u27maturity\u27 of society and individuals. Chapter 3 focuses on \u27education and violence\u27. Although violence is one of the inevitable factors in education, people have tried to avoid facing up to it after World War II. The author investigated the meaning of violence in education in the case study of Tozuka Yacht School. Chapter 4 investigates the effect of depressive mood and gender difference on recall of autobiographical episodic memory, using the cued recall technique. Chapter 5 discusses the idea that construction of social capital (=human relations) is more important for victims than temporary housing itself at the time of recovery from serious disasters like The Great Hanshin-Awaji Earthquake in 1995

    第1章はじめに

    Get PDF
    〈成熟〉概念の社会学的研究(分担執筆

    Elucidating colorectal cancer-associated bacteria through profiling of minimally perturbed tissue-associated microbiota

    Get PDF
    Sequencing-based interrogation of gut microbiota is a valuable approach for detecting microbes associated with colorectal cancer (CRC); however, such studies are often confounded by the effect of bowel preparation. In this study, we evaluated the viability of identifying CRC-associated mucosal bacteria through centimeter-scale profiling of the microbiota in tumors and adjacent noncancerous tissue from eleven patients who underwent colonic resection without preoperative bowel preparation. High-throughput 16S rRNA gene sequencing revealed that differences between on- and off-tumor microbiota varied considerably among patients. For some patients, phylotypes affiliated with genera previously implicated in colorectal carcinogenesis, as well as genera with less well-understood roles in CRC, were enriched in tumor tissue, whereas for other patients, on- and off-tumor microbiota were very similar. Notably, the enrichment of phylotypes in tumor-associated mucosa was highly localized and no longer apparent even a few centimeters away from the tumor. Through short-term liquid culturing and metagenomics, we further generated more than one-hundred metagenome-assembled genomes, several representing bacteria that were enriched in on-tumor samples. This is one of the first studies to analyze largely unperturbed mucosal microbiota in tissue samples from the resected colons of unprepped CRC patients. Future studies with larger cohorts are expected to clarify the causes and consequences of the observed variability in the emergence of tumor-localized microbiota among patients

    Inhibition of Hepatitis C Virus Replication and Viral Helicase by Ethyl Acetate Extract of the Marine Feather Star Alloeocomatella polycladia

    Get PDF
    Hepatitis C virus (HCV) is a causative agent of acute and chronic hepatitis, leading to the development of hepatic cirrhosis and hepatocellular carcinoma. We prepared extracts from 61 marine organisms and screened them by an in vitro fluorescence assay targeting the viral helicase (NS3), which plays an important role in HCV replication, to identify effective candidates for anti-HCV agents. An ethyl acetate-soluble fraction of the feather star Alloeocomatella polycladia exhibited the strongest inhibition of NS3 helicase activity, with an IC50 of 11.7 µg/mL. The extract of A. polycladia inhibited interaction between NS3 and RNA but not ATPase of NS3. Furthermore, the replication of the replicons derived from three HCV strains of genotype 1b in cultured cells was suppressed by the extract with an EC50 value of 23 to 44 µg/mL, which is similar to the IC50 value of the NS3 helicase assay. The extract did not induce interferon or inhibit cell growth. These results suggest that the unknown compound(s) included in A. polycladia can inhibit HCV replication by suppressing the helicase activity of HCV NS3. This study may present a new approach toward the development of a novel therapy for chronic hepatitis C

    Increased prostaglandin e2 has a positive correlation with plasma calcium during goldfish reproduction

    Get PDF
    We recently demonstrated that prostaglandin E2 PG¿ increases osteoclastic activity and induces bone resorption in both in vitro and in vivo experiments using goldfish. In the fish reproductive period, the plasma calcium (Ca) level in female teleosts increases remarkably to make vitellogenin, which is a major component of egg protein and a Ca-binding protein. In this period, however, there is no reported relationship between PGE2 and Ca metabolism in fish. To clarify the Ca metabolism in fish reproduction, we examined plasma PGE2 and Ca levels and measured tartrate-resistant acid phosphatase (TRAP) activities as an indicator of osteoclastic activity in goldfish. Plasma PGE2 levels in the reproductive stage significantly increased as compared with those in non-reproductive stages. Also, both plasma Ca and TRAP increased in the reproductive stage. Significant positive correlations were recognized between plasma Ca and the gonad somatic index (r=0.81, p<0.001), plasma Ca and plasma PGE2 levels (r=0.635, p<0.05), and plasma Ca and plasma TRAP activities (r=0.584, p<0.05) from the analysis using samples of both reproductive and nonreproductive stages. Taking these data into consideration, we suggested that PGE, acts on osteoclasts and increases plasma Ca as a result of osteoclastic bone resorption, and we concluded that PGE, is an important hormone in Ca metabolism during fish reproduction

    Genome Features and Secondary Metabolites Biosynthetic Potential of the Class Ktedonobacteria

    Get PDF
    The prevalence of antibiotic resistance and the decrease in novel antibiotic discovery in recent years necessitates the identification of potentially novel microbial resources to produce natural products. Ktedonobacteria, a class of deeply branched bacterial lineage in the ancient phylum Chloroflexi, are ubiquitous in terrestrial environments and characterized by their large genome size and complex life cycle. These characteristics indicate Ktedonobacteria as a potential active producer of bioactive compounds. In this study, we observed the existence of a putative “megaplasmid,” multiple copies of ribosomal RNA operons, and high ratio of hypothetical proteins with unknown functions in the class Ktedonobacteria. Furthermore, a total of 104 antiSMASH-predicted putative biosynthetic gene clusters (BGCs) for secondary metabolites with high novelty and diversity were identified in nine Ktedonobacteria genomes. Our investigation of domain composition and organization of the non-ribosomal peptide synthetase and polyketide synthase BGCs further supports the concept that class Ktedonobacteria may produce compounds structurally different from known natural products. Furthermore, screening of bioactive compounds from representative Ktedonobacteria strains resulted in the identification of broad antimicrobial activities against both Gram-positive and Gram-negative tested bacterial strains. Based on these findings, we propose the ancient, ubiquitous, and spore-forming Ktedonobacteria as a versatile and promising microbial resource for natural product discovery

    Seawater Polluted with Highly Concentrated Polycyclic Aromatic Hydrocarbons Suppresses Osteoblastic Activity in the Scales of Goldfish, Carassius auratus

    Get PDF
    We have developed an original in vitro bioassay using teleost scale, that has osteoclasts, osteoblasts, and bone matrix as each marker: alkaline phosphatase (ALP) for osteoblasts and tartrate-resistant acid phosphatase (TRAP) for osteoclasts. Using this scale in vitro bioassay, we examined the effects of seawater polluted with highly concentrated polycyclic aromatic hydrocarbons (PAHs) and nitro-polycyclic aromatic hydrocarbons (NPAHs) on osteoblastic and osteoclastic activities in the present study. Polluted seawater was collected from two sites (the Alexandria site on the Mediterranean Sea and the Suez Canal site on the Red Sea). Total levels of PAHs in the seawater from the Alexandria and Suez Canal sites were 1364.59 and 992.56 ng/l, respectively. We were able to detect NPAHs in both seawater samples. Total levels of NPAHs were detected in the seawater of the Alexandria site (12.749 ng/l) and the Suez Canal site (3.914 ng/l). Each sample of polluted seawater was added to culture medium at dilution rates of 50, 100, and 500, and incubated with the goldfish scales for 6 hrs. Thereafter, ALP and TRAP activities were measured. ALP activity was significantly suppressed by both polluted seawater samples diluted at least 500 times, but TRAP activity did not change. In addition, mRNA expressions of osteoblastic markers (ALP, osteocalcin, and the receptor activator of the NF-κB ligand) decreased significantly, as did the ALP enzyme activity. In fact, ALP activity decreased on treatment with PAHs and NPAHs. We conclude that seawater polluted with highly concentrated PAHs and NPAHs influences bone metabolism in teleosts. © 2016 Zoological Society of Japan.Embargo Period 12 month

    Functionally Stable and Phylogenetically Diverse Microbial Enrichments from Microbial Fuel Cells during Wastewater Treatment

    Get PDF
    Microbial fuel cells (MFCs) are devices that exploit microorganisms as biocatalysts to recover energy from organic matter in the form of electricity. One of the goals of MFC research is to develop the technology for cost-effective wastewater treatment. However, before practical MFC applications are implemented it is important to gain fundamental knowledge about long-term system performance, reproducibility, and the formation and maintenance of functionally-stable microbial communities. Here we report findings from a MFC operated for over 300 days using only primary clarifier effluent collected from a municipal wastewater treatment plant as the microbial resource and substrate. The system was operated in a repeat-batch mode, where the reactor solution was replaced once every two weeks with new primary effluent that consisted of different microbial and chemical compositions with every batch exchange. The turbidity of the primary clarifier effluent solution notably decreased, and 97% of biological oxygen demand (BOD) was removed after an 8–13 day residence time for each batch cycle. On average, the limiting current density was 1000 mA/m2, the maximum power density was 13 mW/m2, and coulombic efficiency was 25%. Interestingly, the electrochemical performance and BOD removal rates were very reproducible throughout MFC operation regardless of the sample variability associated with each wastewater exchange. While MFC performance was very reproducible, the phylogenetic analyses of anode-associated electricity-generating biofilms showed that the microbial populations temporally fluctuated and maintained a high biodiversity throughout the year-long experiment. These results suggest that MFC communities are both self-selecting and self-optimizing, thereby able to develop and maintain functional stability regardless of fluctuations in carbon source(s) and regular introduction of microbial competitors. These results contribute significantly toward the practical application of MFC systems for long-term wastewater treatment as well as demonstrating MFC technology as a useful device to enrich for functionally stable microbial populations
    corecore