721 research outputs found

    OCTAD-S: Digital Fast Fourier Transform Spectrometers by FPGA

    Full text link
    We have developed a digital fast Fourier transform (FFT) spectrometer made of an analog-to-digital converter (ADC) and a field-programmable gate array (FPGA). The base instrument has independent ADC and FPGA modules, which allow us to implement different spectrometers in a relatively easy manner. Two types of spectrometers have been instrumented, one with 4.096 GS/s sampling speed and 2048 frequency channels and the other with 2.048 GS/s sampling speed and 32768 frequency channels. The signal processing in these spectrometers has no dead time and the accumulated spectra are recorded in external media every 8 ms. A direct sampling spectroscopy up to 8 GHz is achieved by a microwave track-and-hold circuit, which can reduce the analog receiver in front of the spectrometer. Highly stable spectroscopy with a wide dynamic range was demonstrated in a series of laboratory experiments and test observations of solar radio bursts.Comment: 20 pages, 7 figures, accepted for publication in Earth, Planets and Spac

    Introduction to Electromagnetic Information Security

    Get PDF

    Current Features of Japanese Agriculture and the Protectionism Issue

    Get PDF

    Short-chain ubiquitination is associated with the degradation rate of a cell-surface-resident bile salt export pump (BSEP/ABCB11). MOL #49288 2

    Get PDF
    was enhanced by BSEP mutations, E297G and D482G. Moreover, biotin-labeling studies using MDCK II cells demonstrated that the degradation of cell-surface-resident chimeric protein fusing ubiquitin to BSEP was faster than that of BSEP itself. In conclusion, BSEP/Bsep is modified with two to three ubiquitins, and its ubiquitination is modulated by 4PBA treatment and PFIC2-type mutations. Modulation of short-chain ubiquitination can regulate the change in the degradation rate of cell-surface-resident BSEP by 4PBA treatment and PFIC2-type mutations

    Similarities and uniqueness of Lyα\alpha emitters among star-forming galaxies at z=2.5

    Full text link
    We conducted a deep narrow-band imaging survey with the Subaru Prime Focus Camera on the Subaru Telescope and constructed a sample of Lyα\alpha emitters (LAEs) at z=2.53 in the UDS-CANDELS field where a sample of Hα\alpha emitters (HAEs) at the same redshift is already obtained from our previous narrow-band observation at NIR. The deep narrow-band and multi broadband data allow us to find LAEs of stellar masses and star-formation rates (SFRs) down to \gtrsim10810^8 M_\odot and \gtrsim0.2 M_\odot/yr, respectively. We show that the LAEs are located along the same mass-SFR sequence traced by normal star-forming galaxies such as HAEs, but towards a significantly lower mass regime. Likewise, LAEs seem to share the same mass--size relation with typical star-forming galaxies, except for the massive LAEs, which tend to show significantly compact sizes. We identify a vigorous mass growth in the central part of LAEs: the stellar mass density in the central region of LAEs increases as their total galaxy mass grows. On the other hand, we see no Lyα\alpha line in emission for most of the HAEs. Rather, we find that the Lyα\alpha feature is either absent or in absorption (Lyα\alpha absorbers; LAAs), and its absorption strength may increase with reddening of the UV continuum slope. We demonstrate that a deep Lyα\alpha narrow-band imaging like this study is able to search for not only LAEs but also LAAs in a certain redshift slice. This work suggests that LAEs trace normal star-forming galaxies in the low-mass regime, while they remain as a unique population because the majority of HAEs are not LAEs.Comment: 20 pages, 18 figures, 3 tables, accepted for publication in MNRA
    corecore