192 research outputs found

    Modeling the Probabilistic Distribution of Unlabeled Data forOne-shot Medical Image Segmentation

    Full text link
    Existing image segmentation networks mainly leverage large-scale labeled datasets to attain high accuracy. However, labeling medical images is very expensive since it requires sophisticated expert knowledge. Thus, it is more desirable to employ only a few labeled data in pursuing high segmentation performance. In this paper, we develop a data augmentation method for one-shot brain magnetic resonance imaging (MRI) image segmentation which exploits only one labeled MRI image (named atlas) and a few unlabeled images. In particular, we propose to learn the probability distributions of deformations (including shapes and intensities) of different unlabeled MRI images with respect to the atlas via 3D variational autoencoders (VAEs). In this manner, our method is able to exploit the learned distributions of image deformations to generate new authentic brain MRI images, and the number of generated samples will be sufficient to train a deep segmentation network. Furthermore, we introduce a new standard segmentation benchmark to evaluate the generalization performance of a segmentation network through a cross-dataset setting (collected from different sources). Extensive experiments demonstrate that our method outperforms the state-of-the-art one-shot medical segmentation methods. Our code has been released at https://github.com/dyh127/Modeling-the-Probabilistic-Distribution-of-Unlabeled-Data.Comment: AAAI 202

    RTN: Reparameterized Ternary Network

    Full text link
    To deploy deep neural networks on resource-limited devices, quantization has been widely explored. In this work, we study the extremely low-bit networks which have tremendous speed-up, memory saving with quantized activation and weights. We first bring up three omitted issues in extremely low-bit networks: the squashing range of quantized values; the gradient vanishing during backpropagation and the unexploited hardware acceleration of ternary networks. By reparameterizing quantized activation and weights vector with full precision scale and offset for fixed ternary vector, we decouple the range and magnitude from the direction to extenuate the three issues. Learnable scale and offset can automatically adjust the range of quantized values and sparsity without gradient vanishing. A novel encoding and computation pat-tern are designed to support efficient computing for our reparameterized ternary network (RTN). Experiments on ResNet-18 for ImageNet demonstrate that the proposed RTN finds a much better efficiency between bitwidth and accuracy, and achieves up to 26.76% relative accuracy improvement compared with state-of-the-art methods. Moreover, we validate the proposed computation pattern on Field Programmable Gate Arrays (FPGA), and it brings 46.46x and 89.17x savings on power and area respectively compared with the full precision convolution.Comment: To appear at AAAI-2

    Processing Efficiency, Simulation and Enzyme Activities Analysis of an Air-Lift Multilevel Circulation Membrane Bioreactor (AMCMBR) on Marine Domestic Sewage Treatment

    Get PDF
    The implementation of latest International Maritime Organization emission standard raised stringent requirements for marine domestic sewage discharge. In this study, an air-lift multilevel circulation membrane reactor (AMCMBR) was operated to analyze effects of various ecological factors on effluent of marine domestic sewage. Back-propagation (BP)-Artificial Neural Network (ANN) was used to simulate effect of each ecological factor on reactor performance. The activities of four enzymes were investigated to reveal microbial activities in reactor. Experimental results indicates that the Hydraulic Retention Time (HRT), Mixed Liquid Suspended Solids (MLSS) and pH value cannot be less than 4 h, 3000 mg/L and 6, respectively to meet the IMO emission standard for effluent COD. A small value of mean square error (0.00147) indicated that BP-ANN can well describe the relationship between operation parameters (influent COD, HRT, MLSS, and pH) and effluent COD. The order of relative importance was pH ≈ MLSS > HRT > influent COD. Polyphenol oxidase and urease can serve as indicating factors for reactor performance, whereas dehydrogenase and nitrate reductase showed less susceptible towards varied influent COD and MLSS
    • …
    corecore