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Abstract 

 This paper uses a method based on indentation to characterize a 

polydimethylsiloxane (PDMS) elastomer submerged in an organic solvent (decane, 

heptane, pentane, or cyclohexane).  An indenter is pressed into a disk of a swollen 

elastomer to a fixed depth, and the force on the indenter is recorded as a function of time.  

By examining how the relaxation time scales with the radius of contact, one can 

differentiate the poroelastic behavior from the viscoelastic behavior.  By matching the 

relaxation curve measured experimentally to that derived from the theory of 

poroelasticity, one can identify elastic constants and permeability.  The measured elastic 

constants are interpreted within the Flory-Huggins theory.  The measured permeabilities 

indicate that the solvents migrate in PDMS by diffusion, rather than by convection.  This 

work confirms that indentation is a reliable and convenient method to characterize 

swollen elastomers. 
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I.   INTRODUCTION 

 This paper uses a method based on indentation to characterize an elastomeric 

gel—a network of covalently crosslinked polymers swollen with a solvent.  Gels are used 

in diverse applications, including drug delivery,1-3 tissue engineering,4,5 microfluidics,6,7 

and oilfield management.8  In a gel, the network can change conformation and enable 

large and reversible deformation, while the solvent can migrate through the network and 

enable mass transport.  The deformation and mass transport are coupled—a behavior 

known as poroelasticity.   

 Most gels are soft, and some are slippery, so that traditional methods for 

characterizing materials—e.g., tensile and bending tests—are difficult to perform.  

Furthermore, the change in the conformation of the network and the migration of the 

solvent result in time-dependent deformation.9  These considerations, along with rapidly 

developing applications of gels, call for the development of reliable and convenient 

methods to characterize gels.  

 Indentation has long been used to characterize elasticity and plasticity of 

metals,10 and has in recent years been used to characterize elasticity,11 viscoelasticity 12,13 

and poroelasticity 14-20  of gels.  A challenge has been to relate the response of indentation 

to the properties of the material.  When the deformation of a material is time-dependent, 

the response of indentation depends on how an indenter is pressed into the material.  

Examples include pressing the indenter at a constant velocity, or at a constant force, or 

with oscillating depths, or to a fixed depth.  Each of these methods of indentation must 

be analyzed separately, and each has its own merits and difficulties.   

 This paper adopts a particular method of indentation illustrated in Fig. 1.  After 

an elastomer is saturated with a solvent, an indenter is suddenly pressed into the gel, and 



is subsequently held at a fixed depth h.  The force on the indenter is recorded as a 

function of time, F .  By examining how the relaxation time scales with the radius of 

contact a, we can differentiate the poroelastic behavior from the viscoelastic behavior.  

By fitting the relaxation curve measured experimentally to that derived from the theory 

of poroelasticity, we can identify elastic constants and the permeability of the gel.   

( )t

 This method of indentation has been developed recently,18-20  but has so far been 

applied only to a single material, an alginate hydrogel.20  To ascertain the effectiveness of 

the method further, this paper applies the method to an elastomeric network of 

polydimethylsiloxane (PDMS) submerged in an organic solvent (e.g., decane, heptane, 

pentane, or cyclohexane) that swells PDMS.  PDMS has been used in applications such as 

microfluidics, where the elastomer may imbibe a solvent and change configuration.21,22 

We compare our experimental data with the Flory-Huggins theory, and with the data 

from other experiments in the literature.  This work confirms that indentation is an 

effective method to differentiate the poroelastic and viscoelastic behavior of gels, and to 

determine the poroelastic properties of gels. 

 

II.  SYNOPSIS OF THE THEORY OF POROELASTICITY 

 In our experiment, a disk of the elastomer is submerged in a solvent (Fig. 1).  

Prior to indentation, the elastomer imbibes the solvent and swells to a state of 

equilibrium.  The process of swelling typically involves finite deformation.  Describing 

such deformation requires a nonlinear field theory.23,24  Relative to this homogenous 

state of the swollen gel, however, the additional strain caused by indentation is small, so 

long as the depth of indentation is small compared to the radius of contact.  

Consequently, we will use the swollen gel in the homogeneous state prior to indentation 



as the reference state, and will analyze the time-dependent deformation due to 

indentation by using a linear theory of poroelasticity.  This linear theory was developed 

by Terzaghi 25 and Biot 26 to study the migration of water in soil, and has been adapted to 

study the migration of a solvent in an elastomer. 16,18,24  The following synopsis outlines 

the theory adapted to gels, and the notation to be used in this paper. 

 Consider a gel in a homogenous state, subject to no mechanical load, with  

being the number of solvent molecules per unit volume of the gel, and 

0C

0μ  the chemical 

potential of the solvent in the gel.  The homogeneous state is taken to be the reference 

state. When the gel deforms, the displacement is a time-dependent field, , 

and the strain is 
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The concentration of the solvent in the gel is also a time-dependent field, .  

We adopt the convention that specifies the concentration as the number of solvent 

molecules in the gel divided by the volume of the dry elastomer.  The total number of 

solvent molecules is conserved, so that 
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where  is the flux of the solvent. kJ

 The gel is in mechanical equilibrium, so that the stress field ),,,( 321 txxxijσ  

satisfies 
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The gel is not, however, in diffusive equilibrium, so that the chemical potential of the 

solvent in the gel is a time-dependent field, .  The gradient of the chemical 

potential drives the flux of the solvent according to Darcy’s law: 
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where  η  is the viscosity, and  is the volume per solvent molecule; both are taken to be 

the values measured when the solvent is in its bulk liquid state.  Eq. (4) defines the 

permeability k  as a phenomenological quantity with a unit of length squared. 

Ω

 Each small element of the gel is assumed to be locally in a state of 

thermodynamic equilibrium, so that the work done on the element equals the change in 

the free energy, ( ) CW ijijσ δε μ μδ 0 δ−+= , where W is the free energy of the gel divided by 

the volume of the dry polymer.  The individual polymer chains and solvent molecules are 

commonly assumed to be incompressible.  Consequently, the increase in the volume of 

the gel is entirely due to the additional solvent molecules absorbed, namely,  

  ( )0CCkk −Ω=ε .   (5) 

Under this assumption, the concentration of the solvent is no longer an independent 

variable, so that the free energy is a function of the six components of the strain.  The 

free energy is taken to be quadratic in the strain:  
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where G is the shear modulus and ν  Poisson’s ratio.   The equation of state is 
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In the absence of strain, a change in the chemical potential of the solvent in the gel from 

0 μ  gives rise to a hydrostatic pressure, μ  to − Ω/)( 0μμ , known as the pore pressure in 

the theory of poroelasticity.   

 The volume per molecule Ω  and the viscosity η  are well known for any 

commonly used solvent.  The three other parameters, G k,,ν , characterize the 

poroelasticity of a gel.  A combination of the above equations gives , with  CDtC∂ 2/ ∇=∂
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The field of the solvent concentration obeys the familiar diffusion equation.  In the 

theory of poroelasticity, however, this diffusion equation cannot be solved by itself, 

because the boundary conditions involve the chemical potential and the displacement.  

Nonetheless, the diffusion equation indicates that over time t a disturbance diffuses over 

a length Dt .  

  

III. RELAXATION CURVE DERIVED FROM THE THEORY OF 

POROELALSTICITY 

 We now describe the solution to the poroelastic boundary-value problem 

associated with indentation, Fig. 1.  The solution has a remarkable feature:  if the depth 

of the indentation, h, is held fixed, while the force on the indenter relaxes, the radius of 



contact, a , remains fixed.18-20  In the short-time limit, the concentration of the solvent in 

the gel remains unchanged, so that =kk 0ε .  According to the equation of state (7), the gel 

in the short-time limit behaves like an incompressible elastic material with the shear 

modulus G .  Consequently, the solution of an indenter pressed into an incompressible 

elastic material gives the force in the short-time limit, ( )0F .  In the long-time limit, the 

gel attains a new state of equilibrium, and the solvent in the gel equilibrates with the 

external solvent, so that 0μ μ= .  According to the equation of state (7), the gel in the 

long-time limit behaves like an elastic material with shear modulus G and Poisson’s 

ratio ν .  Consequently, the solution of an indenter pressed into a compressible elastic 

material gives the force in the long-time limit, )(∞F

)

.  The two limits are related by 26   

  1(2)(/)0( ν−=∞FF .   (9) 

 For the gel to evolve from the short-time limit toward the long-time limit, the 

solvent in the gel under the indenter must migrate.  The relevant length in this diffusion-

type problem is the radius of contact, a, and the normalized time takes the form 

.  The function  obeys 2/aDt=τ )(tF 20
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The dimensionless ratio on the left-hand side of (10) is a measure of how far the gel is 

away from the new state of equilibrium.  The function ( )τg  must be determined by 

solving the poroelastic boundary-value problem.  Our previous work 20 indicates that, for 

a given type of indenter, g is a function of the single variable τ , so long as the radius of 

contact is much smaller than the size of the disk of the gel.  



 For a conical indenter pressed into an incompressible elastic material, the force 

on the indenter is 27

  ( ) GahF 40 = ,  (11) 

where the radius of contact a  relates to the depth of indentation  as  h

  θ
π

tan
2

ha = ,  (12) 

with θ  being half the included angle of the conical indenter.  The poroelastic boundary-

value problem has been solved using the finite element method, giving 20

  ( ) ( ) ( )τττ 348.1exp507.0822.0exp493.0 −+−=g . (13) 

 For a spherical indenter of radius R, the corresponding relations are 

  ( ) GahF
3
16

0 = ,  (14) 

  Rha = , (15) 

  ( ) ( ) ( )τττ 679.1exp509.0908.0exp491.0 −+−=g .  (16) 

 

IV.  EXPERIMENTAL DETAILS 

 We made the PDMS elastomer by mixing PDMS base and curing agents, at a ratio 

of 10:1 (by weight) (Essex Brownell, Edison, NJ).  The mixture was cured using a 

cylindrical mold of 5.2 cm diameter and 1.3 cm thickness, in an oven at 70°C for 4 hours.  

The curing resulted in a disk of PDMS elastomer.   



 We used aluminum indenters of two types: a conical indenter with a half included 

angle of , and a spherical indenter with a radius of 20 mm.  The indenters were 

pressed by using a custom-built load frame with a force resolution of 0.01 N and a 

displacement resolution of 1 µm.  The indenters were programmed to approach the 

surface of the elastomer at the speed of 2 µm/s, until the slope of the recorded force-

displacement curve started to be positive. The error in detecting the surface was about 5 

µm. The indenters were then pressed into the elastomer at a speed of 300 µm/s.  The 

time used to press the indenter into the elastomers (2-3 seconds) was much shorter than 

the relaxation time (tens of seconds for dry elastomers, and hours for swollen 

elastomers), so that the effect of the initial loading stage was minimized. 

070=θ

 To characterize the PDMS elastomer itself, we indented a disk of the elastomer as 

cured, without imbibing any solvent.  Fig. 2(a) shows the recorded relaxation curves at 

three depths of indentation.  We then submerged four disks of the cured PDMS in the 

organic solvents pentane, heptane, decane, and cyclohexane for more than 48 hours, 

until the disks were fully saturated with solvent. The dimensions of the swollen disks 

were measured by a caliper.  Each disk swelled by the same ratio in three directions.  The 

swelling ratio 0λ  of a disk was determined by the diameter of the swollen disk divided by 

that of the dry disk.  The disks were then indented while submerged in the solvents (Fig. 

3).  For each solvent, the experiment was repeated several times to different depths of 

indentation (Table I).  Figs. 4(a), 5(a) and 6(a) show the recorded relaxation curves. 

  

V.  POROELASTICITY VERSUS VISCOELASTICITY 

 Dry PDMS elastomers are known to exhibit viscoelastic behavior,28,29  due to 

conformational changes of the polymer chains.30  The rate of viscoelasticity is limited by 



molecular processes such as sliding between the polymer chains, and rotation of the 

joints between the segments.  Consequently, the time for viscoelastic relaxation is 

independent of the macroscopic length scale, namely, the depth of indentation.  

According to contact mechanics, the viscoelastic relaxation curve scales as 31

  ( )tahfF v= ,  (17) 

where the function  depends on the viscoelastic material and the shape of the 

indenter, but is independent of the depth of indentation.

)(tfv

29   

 As shown in Fig. 2(b), when the force on the indenter pressed into the dry 

elastomer is normalized by ah, the relaxation curves measured at the three indentation 

depths collapse into a single curve.  That is, the relaxation time of the dry elastomer is 

independent of indentation depth, a behavior consistent with viscoelastic relaxation.  

The relaxation time shown in Fig. 2(b) is on the order of tens of seconds, and is within 

the range of viscoelastic relaxation times reported in the literature.28,29  

 By contrast, an elastomer swollen with a solvent can exhibit both the viscoelastic 

and the poroelastic behavior.  The rate of poroelastic relaxation is limited by the 

migration of the solvent.  As discussed before, when an indenter is pressed into a gel, for 

the gel to attain the new state of equilibrium, the solvent must migrate, so that the 

relaxation curve scales as 
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t
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where the function  depends on the poroelastic material and the shape of the 

indenter.   That is, the time for poroelastic relaxation scales with a .  If the radius of 

)/( 2atf p

2



contact is large, the time for poroelastic relaxation becomes much longer than the time 

for viscoelastic relaxation.   

 As mentioned above, the viscoelastic relaxation time for the dry PDMS elastomer 

is tens of seconds. When the same PDMS elastomer is saturated with a solvent, the 

polymer chains are stretched.  The viscoelastic relaxation time of the chains is then even 

shorter.  By comparison, when the indenter is pressed into the PDMS elastomeric gels to 

a depth of hundreds of microns, the relaxation time is on the order of hours, Figs. 4(a) 

and 5(a). Consequently, for these depths of indentation, the poroelasticity is expected to 

prevail.  Indeed, if the force is normalized by ah, but the time is not normalized, the 

relaxation curves at the three depths of indentation do not collapse into a single curve, 

Figs. 4(b) and 5(b).  However, when the force is normalized by ah, and the time is 

normalized by , the relaxation curves for the three depths of indentation collapse into 

a single curve, Figs. 4(c) and 5(c).  This scaling behavior is consistent with poroelastic 

relaxation. 

2a

 

VI.  EXTRACTION OF POROELASTIC CONSTANTS 

 By matching the relaxation curve recorded experimentally to that derived from 

the theory of poroelasticity, we can identify the poroelastic constants G, ν , and D.  Take 

the conical indentation of a PDMS elastomer submerged in heptane, for instance. 

Inserting the instantaneous force shown in Fig. 4(a) into Eq. (11) gives the shear 

modulus, MPa012.0797.0 ±= )(/)0(G . A comparison of the experimental value of ∞FF

003.0346.0

 

and Eq. (9) yields Poisson’s ratio, ±=ν . As shown in Fig. 4(d), the 



theoretical curve, Eq. 13, overlaps with the experimental data when the diffusivity is 

taken as .  /sm103.2 ×=D 29−

 The same procedure applies to spherical indentation.  Comparing the 

experimental data in Fig. 5(a) with the poroelastic solution for a spherical indenter, 

Equations (14)-(16), we determine the three poroelastic parameters:  

, MPa013.0771.0 ±=G 008.0327.0 ±=ν  and .  The spherical 

indentation and the conical indentation were performed on disks of PDMS prepared at 

different times.  The elastic constants determined by the two types of indenters agree 

well.  The diffusivities determined by the two types of indenters differ by 35%.  We have 

not determined whether this difference was caused by any systematic measurement 

error or by difference in the samples prepared at different times. 

/sm101.3 ×=D 29−

2

 The conical indenter was also pressed into PDMS disks submerged in pentane, 

decane, and cyclohexane. The same scaling relation of  was obtained, 

Fig. 6.  The values of G , 

)/(~/ atfahF p

ν , and D  obtained for each PDMS-solvent system are listed in 

Table II.   

 Thus the indentation-based method determines of both the elastic constants and 

permeability of gels. Traditional methods like tension, compression, and torsion tests 

only give the elastic constants.32-34  A well-known method to obtain the permeability 

involves measuring the flux of a solvent through an elastomeric membrane. This method 

requires eliminating all air bubbles.  When the liquid is very volatile the method is even 

more difficult to operate.  It is also difficult to control the homogeneity of the boundary 

conditions applied on the thin elastomeric memberane.35-42  Permeabilities are often 

derived by measuring the kinetics of swelling.43-46  To shorten the time of experiment, 

swelling is usually carried out by using small spheres, thin fibers, or thin membranes.  



Swelling typically involves large deformation, and quantitative interpretation of 

experiments is challenging.  

 

VII. INTERPRETATION OF THE ELASTIC CONSTANTS USING THE 

FLORY-HUGGINS THEORY 

 Following Flory and Huggins, 47-49 we assume that the free energy of a polymeric 

gel, W, is due to stretching the network of the polymer chains and mixing of the polymer 

chains with the solvent molecules: 

   ms WWW += ,  (19) 

where Ws and Wm are the contributions from stretching and mixing, respectively.  Let 

1λ , 2λ , and 3λ  be the stretches in the three principal directions.  The free energy due to 

the stretching of a polymeric network is taken to be 47

  ( )321
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where N is the number of polymer chains in the gel divided by the volume of the dry 

polymers, and kBT is the temperature in the unit of energy.  The free energy of mixing is 

taken to be 
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where the concentration of the solvent relates to the stretches as 1321 −=Ω λλλC .  The 

first term inside the bracket represents the entropy of mixing, and the second the 



enthalpy of mixing, where χ  is a dimensionless parameter known as the Flory-Huggins 

interaction parameter. 

 Let the network of polymers swell in a solvent until it reaches equilibrium.  Take 

the swelling ratio of the gel in this state to be 0321λ λ = λ = λ= .  Perturb this state by 

superimposing a state of small strains 332211 ,,ε εε , such that the stretches of the gel 

become 

  ( )110 , ( )2202 1 ελλ += , ( )3303 1 ελλ += .  (22) 1λ λ ε1 +=

If we expand the free-energy function in a power series up to the second order in the 

strains, we obtain that 
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 A comparison of (23) and (6) gives 
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Given G  and ν , the set of nonlinear algebraic equations (24)-(26) determine 0λ , χ , 

and N. Fig. 7 plots 0 χ  as functions of G  and ν . Once 0λ  and λ is known, N is readily 

calculated from Eq. (24). At room temperature, .   J104× 21−=TBk

 Substituting G  and ν  obtained from the indentation experiments into Eqs. (24)-

(26), we calculate 0λ , χ , and N for each PDMS-solvent system, as listed in Table III.  

The experimentally measured swelling ratios 0λ  closely reproduce the values reported in 

the literature.22  The directly measured values of 0λ  differ by less than 5% from the 

values calculated using the Flory-Huggins’ model.  Also listed are the values of χ  found 

in the literature as obtained from swelling experiments.50-54  The difference between 

these values and the ones calculated in this paper is less than 15%. 

 Within the Flory-Huggins theory, the shear modulus of the gel in the dry state is 

.TNkG = T

GahF 4/)( =∞

Bdry
47   For every PDMS-solvent system, the calculated Nk  should be the 

same and equal the shear modulus of the dry PDMS.  Observe that G  can be 

determined from the measured relaxation curve on the cured PDMS elastomer without 

any solvent, Fig. 2.  Assuming incompressibility of the dry PDMS elastomer and 

substituting the long-time force shown in Fig. 2 into the analytical relation 

 yields 

B

dry

dry MPa02.001.1 ±= TNk

MPa 060071 ..TNk

dryG .  Table III lists the values of for the 

four PDMS-solvent systems calculated by using Eq. (24) and the measured values of the 

shear modulus and swelling ratio.  These values, 

B

B ±= , are consistent 

with the experimental value of  G . dry



 

VIII. CONVECTION VERSUS DIFFUSION 

 Darcy’s law, Eq. (4), is phenomenological, and is not tied to any specific 

mechanism of transport.  Similarly, the quantity defined by Eq. (8) is named diffusivity 

purely by its macroscopic effect; this name does not imply that solvent molecules must 

diffuse in the network.  Indeed, the theory of Terzaghi 25 and Biot 26 were introduced for 

the flow of bulk water through soil.  A solvent can migrate through a polymer network by 

convection or diffusion.  Convection describes solvent molecules moving collectively as a 

bulk liquid, and is expected to occur when the mesh size of the network is much larger 

than the size of an individual solvent molecule.  By contrast, diffusion describes solvent 

molecules moving individually at random, and is expected to occur when the mesh size 

of the network is comparable to the size of an individual solvent molecule.  

 Listed in Table II are values of self-diffusivity of the solvents in the bulk liquid 

state independently measured by other researchers.55-57  These values are close to our 

measured diffusivities for the solvents migrating in the PDMS.  The average mesh size 

ξ of a polymeric network is estimated by 58,59
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Inserting the experimental swelling ratio 0λ  which was directly measured using caliper 

(Table III) and the shear modulus of the dry PDMS elastomer, =dry MPa02.001.1 ±G  into 

Eqs. (24) and (27), we estimate the mesh size of the swollen PDMS gels in each organic 

solvent.  The calculated values are listed in Table III.  The estimated mesh size of the 

swollen PDMS gels is on the same order of magnitude as the dimension of the solvent.  



Thus, it is not surprising that the solvents migrate in the PDMS elastomer by diffusion.  

Fig. 8 shows a linear relation between the measured diffusivity D and the inverse of the 

viscosity η/

−

10−

1 .  This relation has also been observed for organic solvents permeating 

through membranes of swollen elastomers.35   

 For each PDMS-solvent system, the permeability is calculated according to (8) 

and listed in Table II. The correlation of permeability with the molecular volume of the 

solvent is plotted in Fig. 9.  For solvents of chain-like molecules such as pentane, heptane, 

and decane, the permeability of PDMS gels decreases as the molecular volume of the 

solvent increases.  The same trend has been obtained for the permeability of alcohols 

through porous glass.60  Also evident in Fig. 9 is that the permeability of cyclohexane 

does not follow the same trend as for chain-like molecules.  That is, the permeability is 

also affected by the shape of the solvent molecule.  This result offers another piece of 

evidence that the mechanism of solvent transport in the swollen PDMS is diffusive. 

 Incidentally, we previously used the same method to study the migration of water 

in a covalently cross-linked alginate hydrogel.20  The measured diffusivity was 

 m81024.3 × 2/s, which was two orders of magnitude larger than the self-diffusivity of 

water m108× 2/s.  The mesh size of the alginate gel is 4.06.11 ± nm,61 which is 

approximately forty times the dimension of the water molecule 2.8 Å.  Consequently, 

water is expected to migrate in the alginate hydrogel by convection. 

 

IX.   CONCLUDING REMARKS 

 While time-dependent and finite deformation of gels is difficult to analyze in 

general, the additional strain superimposed on swollen gels by indentation is small, and 



can be analyzed by using the linear theory of poroelasticity.  The solution to the 

boundary-value problem takes a remarkably simple form, enabling indentation to be a 

convenient and reliable method to study the mechanics, thermodynamics and kinetics of 

gels.  The experiments readily differentiate mechanisms of deformation (viscoelasticity 

and poroelasticity).  The experiments also readily differentiate mechanisms of transport 

(convection and diffusion).  By fitting the relaxation curve measured experimentally to 

that derived from the theory of poroelasticity, we can identify elastic constants and the 

permeability of.  The measured elastic constants of the PDMS-solvent systems can be 

interpreted by using the Flory-Hugging theory.  The measured permeabilities suggest 

that the organic solvents migrate in the PDMS by diffusion, rather than by convection.   
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TABLE I. Type of indenter and depths pressed into each sample. 

 

samples 
Type of 

indenter 
Indentation depth (μm) 

Dry PDMS cone 400 700 1000 

PDMS gel in decane cone 600 800 1000 

cone 600 800 1000 
PDMS gel in heptane 

sphere 200 300 400 

PDMS gel in pentane cone 400 600 800 

PDMS gel in cyclohexane cone 600 800 1000 

 

 



TABLE II. Poroelastic properties of each PDMS/solvent system and the properties of the 

solvent used in each system. 

 

 

 

 

 

 

 

 

Solvents 

T=25 °C 

Shear 
modulus 

G  (MPa) 

Possion ratio 

ν  

Diffusivity 

D 

(109 m2/s) 

Solvent self 
diffusivity 

D 

(109 m2/s) 

Permeability 

k  (1019 m2) 

Solvent 
viscosity 

η  

(103 Pa.s) 

Molecula
r volume 

Ω 

(1028 m3) 

Decane 

 
0.936±0.019 0.392±0.004 1.1±0.08 1.31 55 1.78±0.13 0.92 3.236 

Heptane 

 
0.797±0.012 0.346±0.003 2.3±0.03 3.12 56 2.68±0.04 0.386 2.432 

Pentane 

 
0.738±0.022 0.307±0.004 5. 9±0.1 5.45 56 4.81±0.0 8 0.23 1.914 

Cyclohexane 

 

0.869±0.017 0.347±0.003 1.2±0.03 1.42 57 2.92±0.07 0.9 1.794 
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TABLE  III. Thermodynamic properties of each PDMS-solvent system 

Solvents 

T=25 °C 

Measured 
swelling 

ratio 

Swelling 
ratio 

0λ  

NkBT B

(MPa) 

Florry-
Huggins 

parameter 

χ  

Literature 

χ  

0λ  

Mesh size, 

ξ 

(109 m) 

Decane 1.26 1.19 1.11 0.8  2.47 

Heptane 1.33 1.28 1.02 0.66 0.53-0.64 50-52 2.61 

Pentane 1.42 1.37 1.01 0.57 0.51-0.59 50-52 2.79 

Cyclohexane 1.32 1.31 1.13 0.65 0.51-0.55 53,54 2.59 
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FIG. 1.  A disk of a gel is submerged in a solvent throughout the experiment.  Prior to 

indentation, the gel imbibes the solvent and swells to a state of equilibrium.  An indenter 

is then rapidly pressed into the gel, and is subsequently held at a fixed depth h.  The 

indenter causes the solvent to migrate in the gel, so that the force F on the indenter 

decreases as a function of time, until the gel reaches a new state of equilibrium. 
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(a) (b) 

 

 

FIG. 2.  A conical indenter was pressed into a dry PDMS sample to three depths. (a) 

Experimentally measured force as a function of time.  (b) When the force is normalized 

as , but the time is not normalized, the force-relaxation curves for the three 

depths of indentation collapse to a single curve. 
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FIG. 3.  Experimental setup.  (a) A conical indenter made of aluminum.  (b) The indenter 

is pressed into a disk of PDMS, which is submerged in a solvent.  
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FIG. 4.  A conical indenter was pressed to three depths into a PDMS gel submerged in 

heptane. (a) Experimentally measured force as a function of time.  (b) The force is 

normalized as , but the time is not normalized.  (c) The force is normalized as 

, and the time is normalized as . (d) The force is normalized as 

, and the time is normalized as .  

ahF /

ahF / 2/ at
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FIG. 5.  A spherical indenter was pressed to three depths into a PDMS gel submerged in 

heptane. (a) Experimentally measured force as a function of time.  (b) The force is 

normalized as , but the time is not normalized.  (c) The force is normalized as 

, and the time is normalized as . (d) The force is normalized as 

, and the time is normalized as .  

ahF /

ahF / 2/ at

( ) ( )[ ] ( ) ( )[ ∞−∞− FFFtF 0/ ] 2/ aDt
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 (a) (b) 
 
 

 

FIG. 6.  A conical indenter was pressed to three depths into four disks of PDMS 

submerged in different solvents.  (a) The force is normalized as , and the time is 

normalized as .  (b) The force is normalized as 

ahF /

2/ at ( ) ( )[ ] ( ) ( )[ ]∞−∞− FFFtF 0/ , and the 

time is normalized as Dt .  For the experimental data to fit the function 2/ a ( )τg , each 

solvent needs a distinct value of D, as listed in Table 2. 
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FIG. 7.  Thermodynamic parameters are expressed in poroelastic parameters.  (a) Flory-

Huggins interaction parameter χ  vs. Possion’s ratio ν  for various normalized shear 

modulus .  (b) Swelling ratio kTG /Ω 0λ vs. Possion’s ratio v for various . kTG /Ω
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FIG. 8.  Correlation between the viscosity of solvent in bulk liquid and diffusivity of the 

solvent in PDMS. 
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FIG. 9.  Correlation between molar volume of solvent and diffusivity of the solvent in 

PDMS. 
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