4,322 research outputs found

    Capacity of nonlinear bosonic systems

    Full text link
    We analyze the role of nonlinear Hamiltonians in bosonic channels. We show that the information capacity as a function of the channel energy is increased with respect to the corresponding linear case, although only when the energy used for driving the nonlinearity is not considered as part of the energetic cost and when dispersive effects are negligible.Comment: 6 pages, 3 figure

    Processing and Transmission of Information

    Get PDF
    Contains research objectives and summary of research on three research projects and reports on two research projects.National Aeronautics and Space Administration (Grant NGL 22-009-013)National Science Foundation (Grant GK-41464)National Science Foundation (Grant GK-41098)Joint Services Electronics Program (Contract DAAB07-74-C-0630)National Science Foundation (Grant GK-37582

    Growth, processing, and optical properties of epitaxial Er_2O_3 on silicon

    Get PDF
    Erbium-doped materials have been investigated for generating and amplifying light in low-power chip-scale optical networks on silicon, but several effects limit their performance in dense microphotonic applications. Stoichiometric ionic crystals are a potential alternative that achieve an Er^(3+) density 100× greater. We report the growth, processing, material characterization, and optical properties of single-crystal Er_2O_3 epitaxially grown on silicon. A peak Er^(3+) resonant absorption of 364 dB/cm at 1535nm with minimal background loss places a high limit on potential gain. Using high-quality microdisk resonators, we conduct thorough C/L-band radiative efficiency and lifetime measurements and observe strong upconverted luminescence near 550 and 670 nm

    Structure of the Phase in Pure Two-Mode Gaussian States

    Full text link
    The two-mode relative phase associated with Gaussian states plays an important role in quantum information processes in optical, atomic and electronic systems. In this work, the origin and structure of the two-mode relative phase in pure Gaussian states is studied in terms of its dependences on the quadratures of the modes. This is done by constructing local canonical transformations to an associated two-mode squeezed state. The results are illustrated by studying the time dependence of the phase under a nonlocal unitary model evolution containing correlations between the modes. In a more general context, this approach may allow the two-mode phase to be studied in situations sensitive to different physical parameters within experimental configurations relevant to quantum information processing tasks

    Capacities of Quantum Channels for Massive Bosons and Fermions

    Full text link
    We consider the capacity of classical information transfer for noiseless quantum channels carrying a finite average number of massive bosons and fermions. The maximum capacity is attained by transferring the Fock states generated from the grand-canonical ensemble. Interestingly, the channel capacity for a Bose gas indicates the onset of a Bose-Einstein condensation, by changing its qualitative behavior at the criticality, while for a channel carrying weakly attractive fermions, it exhibits the signatures of Bardeen-Cooper-Schrieffer transition. We also show that for noninteracting particles, fermions are better carriers of information than bosons.Comment: 4 pages, 3 eps figures, RevTeX4; v2: discussions added, small changes, published versio

    Distinguishing between optical coherent states with imperfect detection

    Full text link
    Several proposed techniques for distinguishing between optical coherent states are analyzed under a physically realistic model of photodetection. Quantum error probabilities are derived for the Kennedy receiver, the Dolinar receiver and the unitary rotation scheme proposed by Sasaki and Hirota for sub-unity detector efficiency. Monte carlo simulations are performed to assess the effects of detector dark counts, dead time, signal processing bandwidth and phase noise in the communication channel. The feedback strategy employed by the Dolinar receiver is found to achieve the Helstrom bound for sub-unity detection efficiency and to provide robustness to these other detector imperfections making it more attractive for laboratory implementation than previously believed

    Optical Propagation and Communication

    Get PDF
    Contains research objectives and summary of research on three research projects, and reports on three research projects.National Aeronautics and Space Administration (Grant NGL 22-009-013)National Science Foundation (Grant ENG74-00131-A01)National Science Foundation (Grant ENG74-03996-A01

    Operational Theory of Homodyne Detection

    Full text link
    We discuss a balanced homodyne detection scheme with imperfect detectors in the framework of the operational approach to quantum measurement. We show that a realistic homodyne measurement is described by a family of operational observables that depends on the experimental setup, rather than a single field quadrature operator. We find an explicit form of this family, which fully characterizes the experimental device and is independent of a specific state of the measured system. We also derive operational homodyne observables for the setup with a random phase, which has been recently applied in an ultrafast measurement of the photon statistics of a pulsed diode laser. The operational formulation directly gives the relation between the detected noise and the intrinsic quantum fluctuations of the measured field. We demonstrate this on two examples: the operational uncertainty relation for the field quadratures, and the homodyne detection of suppressed fluctuations in photon statistics.Comment: 7 pages, REVTe

    Minimum-error discrimination between subsets of linearly dependent quantum states

    Get PDF
    A measurement strategy is developed for a new kind of hypothesis testing. It assigns, with minimum probability of error, the state of a quantum system to one or the other of two complementary subsets of a set of N given non-orthogonal quantum states occurring with given a priori probabilities. A general analytical solution is obtained for N states that are restricted to a two-dimensional subspace of the Hilbert space of the system. The result for the special case of three arbitrary but linearly dependent states is applied to a variety of sets of three states that are symmetric and equally probable. It is found that, in this case, the minimum error probability for distinguishing one of the states from the other two is only about half as large as the minimum error probability for distinguishing all three states individually.Comment: Representation improved and generalized, references added. Accepted as a Rapid Communication in Phys. Rev.

    Novel cloning machine with supplementary information

    Full text link
    Probabilistic cloning was first proposed by Duan and Guo. Then Pati established a novel cloning machine (NCM) for copying superposition of multiple clones simultaneously. In this paper, we deal with the novel cloning machine with supplementary information (NCMSI). For the case of cloning two states, we demonstrate that the optimal efficiency of the NCMSI in which the original party and the supplementary party can perform quantum communication equals that achieved by a two-step cloning protocol wherein classical communication is only allowed between the original and the supplementary parties. From this equivalence it follows that NCMSI may increase the success probabilities for copying. Also, an upper bound on the unambiguous discrimination of two nonorthogonal pure product states is derived. Our investigation generalizes and completes the results in the literature.Comment: 22 pages; the presentation is revised, and some typos are correcte
    corecore