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RESEARCH OBJECTIVES AND SUMMARY OF RESEARCH

i. Optical Communication

The broad objectives of these investigations are (i) to formulate communication
models for important optical channels from the underlying physical processes, (ii) to
determine the fundamental limits on the communication performance that can be real-
ized with these channels, (iii) to develop communication techniques that achieve, or
approach, these limits, and (iv) to establish the validity and guide the evolution of the
theoretical results through experiment.

a. Quantum Communication Theory

National Aeronautics and Space Administration (Grant NGL 22-009-013)

Robert S. Kennedy, Jeffrey H. Shapiro, Horace P. H. Yuen

We are investigating the fundamental limits imposed upon optical communications

systems by quantum effects. Vincent Chan has completed a doctoral dissertation 1

and presented a paper on the implementation of quantum measurements.2 During the
past year we have also defined the conditions that are necessary and sufficient for a

receiver to be optimum 3 ' 4 and for the feedback in an (optical) closed-loop receiver to
be optimum. We have determined the structure and performance of quantum receivers

for the space communication channel 5 ' 6 and made a study (see Sec. XIV-A) of possible

means of generating a class of quantum states to yield improved system performance. 7

During the coming year, a major objective is to determine the extent to which the
performance of optimized quantum receivers can be made substantially superior to
that of conventional receivers. This can only occur in systems that operate at high
information rates or employ novel quantum states. We now seek to determine whether
it does occur in the first instance, and how to generate the states in the second instance.

A second objective is to establish the performance advantage of optical feedback
receivers. These receivers have already been shown to offer significant improvement

over conventional receivers in some isolated situations. 8 ' 9 We do not know yet whether
this is an indication of a universal advantage or only an isolated benefit.

PR No. 115 207



(XIV. PROCESSING AND TRANSMISSION OF INFORMATION)

References

1. V. W. Chan, "Characterization of Measurements in Quantum Communications,"
Ph.D. Thesis, Department of Electrical Engineering, M. I. T., August 1974.

2. V. W. Chan, "Two Realizations of Quantum Measurements Characterized by
Generalized Operator-Valued Measures," 1974 IEEE International Symposium on
Information Theory, Notre Dame, Indiana, October 28-31.

3. H. P. Yuen, R. S. Kennedy, and M. Lax, "Optimum Testing of Multiple Hypotheses
in Quantum Detection Theory," 1974 IEEE International Symposium on Information
Theory, Notre Dame, Indiana, October 28-31.

4. H. P. Yuen, R. S. Kennedy, and M. Lax, "Optimum Testing of Multiple Hypotheses
in Quantum Detection Theory" (to appear in IEEE Trans. on Information Theory).

5. R. S. Kennedy, "The M-ary Pure State Quantum Detection Problem," 1974 IEEE
International Symposium on Information Theory," Notre Dame, Indiana, October 28-31.

6. R. S. Kennedy, "Uniqueness of the Optimum Receiver for the M-ary Pure State
Problem," Quarterly Progress Report No. 113, Research Laboratory of Electronics,
M. I. T., April 15, 1974, pp. 129-130.

7. H. P. Yuen, "Performance Improvement of Optical Communication Systems by a
Quantum State Generating Receiver," 1974 IEEE International Symposium on Infor-
mation Theory, Notre Dame, Indiana, October 28-31.

8. S. J. Dolinar, "An Optimum Quantum Receiver for the Binary Coherent State Chan-
nel," Quarterly Progress Report No. 111, Research Laboratory of Electronics,
M.I.T., October 15, 1973, pp. 115-120.

9. S. J. Dolinar, "An Optimum Receiver for the Binary Coherent State Quantum Chan-
nel," 1974 IEEE International Symposium on Information Theory, Notre Dame,
Indiana, October 28-31.

b. Improved Low-Visibility Communication

National Science Foundation (Grant GK-41464)

Robert S. Kennedy, Jeffrey H. Shapiro

This investigation, which is carried out jointly with the M. I. T. Center for Mate-
rials Science and Engineering, is concerned with the performance of terrestrial line-
of-sight communication systems under conditions of low visibility. Its objective is to
determine the extent to which performance can be improved through appropriate system
design, and to develop the devices for achieving this improvement. The potential for
improvement resides in the energy and information contained in the scattered compo-
nent of the received field.

Preliminary experimental results obtained during the past year indicate that, in
fact, substantial performance improvements can be realized, but the variability of those
results dictates that a more exhaustive set of propagation measurements be undertaken
to determine the magnitude of the energy in the scattered component of the received
field as a function of meteorological conditions. Accordingly, the major objective in
1975 will be to obtain the required experimental data for a line-of-sight path in the
Boston area that is approximately 10 miles long. This will entail measurements of the
scattered and unscattered energy, the angular spectrum of the scattered field, the time
dispersion of the scattered field (multipath spread), and the frequency dispersion of the
scattered field (fading rate). Measurements will be made at 0. 63, 0. 69, and 2. 06 [tm
wavelength. The data will be correlated with meteorological conditions and used to pre-
dict the improvement in system performance that can be expected with systems that are
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specifically designed for low-visibility operation.

In parallel with this experimental program we shall continue our determination of
the structure and performance of receivers that best utilize the scattered component of
the received field (see Sec. XIV-B).

c. Propagation and Communication through Atmospheric Turbulence

National Science Foundation (Grant GK-41098)

Jeffrey H. Shapiro

Because the primary effects of atmospheric turbulence on optical wave propagation
are of a spatial nature, accurate spatial channel models are required to assess the lim-
itations imposed by turbulence on spatial or spatiotemporal modulation systems. Thus
a major thrust of our research has been to develop propagation models for the turbulent
atmosphere that preserve the relevant spatial features of the propagation process and
offer insight into the design and performance of optical communication systems. The
second emphasis in our research is on the study of adaptive communication systems,
i. e., systems in which channel estimates are made and used to compensate for the
effects of turbulence.

During the past year, we have completed a study of the normal-mode decomposition

of the turbulent atmosphere. We found that the atmosphere exhibits far-field and near-
field propagation regimes that are similar to those of the free-space channel.

Previously we had used the far-field propagation results to show how earth-to-
space power transfer through atmospheric turbulence may be maximized by tracking
(reciprocity-pointing) a pilot tone received on the ground from a laser aboard the space-

craft. 2 In the past year we have evaluated the reduction in reciprocity-tracking perfor-
mance that occurs because the ground transmitter must "point ahead" to compensate for

spacecraft motion.3 Although the gain reduction may be substantial, the average power
received at the spacecraft from the adaptive system increases continually in proportion
to the transmitter area on the ground, unlike the performance of a nonadaptive trans-
mitter which saturates when the transmitter diameter on the ground exceeds the
atmospheric phase-coherence length. Work continues on the performance of phase-
compensation transmitters and the bit error rate of reciprocity-tracking communication
systems.

We have used the near-field propagation results to study coherent imaging through
turbulence. We have found that a channel matched-filter (CF) receiver is essentially
the optimum imager when the atmospheric Green's function is known a priori, and we

showed that this receiver achieves diffraction-limited resolution.4 We are investigating
transmitted-reference techniques for implementation of the CF receiver.
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2. Complexity of Networks and Algorithms

U. S. Army Research Office - Durham (Contract DAHC04-74-C-0027)

Peter Elias

During the past year Donna J. Brown completed a Master's thesis on the complexity

of decoders for optimal variable-length codes. 1 A paper on this topic is in preparation.
A paper on the complementary topic of codes that can be easily decoded and are uni-

formly pretty good for a large class of sources is scheduled for publication.2 At present,
Howard F. Okrent is exploring the relation between the retrieval models that we have
been using and the more dynamic model of a data algebra, in which a data base is
represented by the sequence of operations which built it up.
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JSEP 3. Information Theory of Data Processing Systems

Joint Services Electronics Program (Contract DAAB07-74-C-0630)

National Science Foundation (Grant GK-37582)

Peter Elias

The complexity problems summarized in Section XIV-2 arose from consideration l

of the minimal complexity of computations performed by Turing machines and other
halting automata when the freedom of representation of input and output which is usual
in communications problems is allowed. The most natural application of such results

is to problems of information storage and retrieval. Richard A. Flower 2 has completed
a doctoral thesis giving informational lower bounds to the complexity of updating a data
base. A paper that applies earlier results on the complexity of static retrieval and
Flower's results on updating to several simple examples has been accepted for publi-

cation. 3 Future plans include a systematic treatment of the general static retrieval
problem.
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A. GENERALIZED COHERENT STATES: STATISTICS OF TWO-PHOTON

LASERS AND ELIMINATION OF QUANTUM NOISE

National Aeronautics and Space Administration (Grant NGL 22-009-013)

Horace P. H. Yuen

For a radiation mode of frequency w with photon annihilation operator a, the coher-

ent states la)(ala) = a la)) have relatively large quantum fluctuations 1 ' 2 when o/27r >

1012 Hz. With a = a 1 + ia2 , a al + ia 2 for self-adjoint al, a2 and real al, a2 , a coher-

ent state a) gives (Aa) = (Aa2) = 1/4. A noise energy 1h/4 (actually a power spectral

density, that is, power per unit frequency) is obtained if either of the quadrature com-

ponents al or a2 is measured. This quantum noise is frequently d6minant over other

noise sources in a communication situation; for example, an equivalent noise tempera-

ture of ~3400'K is obtained for h /4 at the YAG laser frequency. States with (Aal) <<1/4

and correspondingly larger (Aaz), however, are permitted by the uncertainty principle
(Aa,) (Aa2) > 1/16. (The roles of al and a 2 are completely symmetrical here.) If

such small (Aa) states can be generated by an explicit physical process, they

can be used profitably as local oscillators in signal reception. These states may also

offer significant improvement in the signal-to-noise ratio (S/N) 1 = (a ) 2 /(Aa). We

shall show that stimulated two-photon emission puts out "generalized coherent states"

possessing the desired quantum noise behavior and forming a natural generalization of

the usual coherent states.

An ordinary coherent state is a special degenerate case of a generalized coherent

state, which is basically a minimum uncertainty state. In general, a generalized

coherent state differs from a coherent state in several ways: it is generated by different

photon processes, or equivalently it describes the quantum states of radiation obtained

from different photon processes, and it has different quantum statistical properties.

These and other differences, which are interrelated, will now be described.

The generalized coherent states IP)g are the eigenstates of b with eigenvalues P.

For complex numbers i, v,

b = -±a + va ; 2-2I = 1 (1)

so that [b, bt] = I. From this commutator it follows at once 3 that b has exactly the

same properties as a. In particular, it acts as the lowering operator for eigenstates

of btb, and itself possesses an overcomplete set of eigenstates. 2 Note that b is an

operator on the Hilbert space of radiation states with frequency W, and not on radiation

states at a different frequency. We are considering only a single frequency.

The general coherent-state wave function of I P)g, from the differential operator
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representation of a and b, is

(a p)g = y-1/ exp .j- aJZ -2 i1 -(v/2.)a + (vIt/2t) P +(I/)a P+i o  , (2)

where 6 is a real constant. The density operator (p =) IP)g g(PI cannot be represented

as a positive superposition of coherent states. In fact, the P-representation of I P) (p
1,2 gg

does not exist (or is very singular), except when v = 0 where it reduces to a two-

dimensional 6-function as an ordinary coherent state.

For the state I P)g from (2), we have

(a)> = g(Pl alP)g =P1= , P - v1 ; (b) = (3)

2 1 2 2 1 2

(4alAa2 ) = ((al-Pll)(a-P2)) = i(l + v-v )/4. (5)

Define

-1 i( v-v )
a' = a exp i tan 1. (6)

Then it is not difficult to show that (2) represents the minimum uncertainty states for

the product (Aa 2) (Aa' ) 1/16, with

2 1 -IV1=- (& ' 1 )40 +1 2h (7)

When = 6v for real 6, (2) becomes the usual minimum uncertainty states 3 for

(Aa) (Aa ). The eigenstates of al,a 2 are also included in the limit [i, v - oo. Thus

generalized coherent states are also "generalized minimum uncertainty states." In

particular, it follows from (4) and (7) that the quantum fluctuations in al and a 2 (or

a'1 and a'2 ) can be exchanged in a generalized coherent state, while (Aa ) and (Aa2)

are always larger than 1/4 in coherent states and their classical superpositions.

The possibility of having an absolutely small (Aa ) << 1/4 in 1P)g is an impor-

tant advantage in its utilization as a local-oscillator state. For example, in the recep-

tion of a coherent-state signal with a size-limited detector, it is possible, by employing

a local oscillator that generates radiation in state jI) g, to attenuate the quantum noise

by an amount that compensates the large diffraction loss incurred in free-space or

unguided propagation. We shall not go into the details of this problem here.
2h

In principle, it is possible to have a state with (Aa 1 ) -0, that is, an eigenstate

PR No. 115 212



(XIV. PROCESSING AND TRANSMISSION OF INFORMATION)

of al. But for a fixed total radiative energy tr pa a < S, a decrease of (Aa2) in a state

p)g can be obtained only at the expense of spending a portion of available energy S in

the form of added quantum noise energy tr p(Aa) (Aa) = Iv 2 . Thus (Aa2) -0 requires

S - o. This consideration is not important in the context of local oscillators in a
2

receiver, where a large amount of power is usually available to make ( Aa 1 ) sufficiently

small. Thus a four order of magnitude reduction from the noise 1/4 of a1 (11 ~ 102)

for a GHz bandwidth optical signal at w/ZTr ~ 1015 Hz requires only a v 12 corresponding

to ~1 microwatt. This will usually bring it down to the level of other extraneous noises.

Furthermore, even a ten order reduction of the quantum noise requires ~1 W under

the same condition.

On the other hand, the radiative power constraint places a major limitation on the

signal-to-noise ratio (S/N) 1 when a transmitter generates information-carrying radia -

tion in a state P) g. (Note that it is not meaningful to talk about the (S/N) of a local

oscillator, since the signal comes from the transmitter.) By spending a fraction

S/(2S+1) of S as quantum noise energy I vl 2 , it can be shown that (S/N) 1 of a transmitter
2

state P)g becomes 4S + 4S, compared with 4S in a coherent state. This leads to a

higher information capacity even when the "channel" a 2 is not used. In the presence

of other extraneous noises quantum-noise reduction in a transmitter state I )g can also

be obtained with only a relatively small I V2 as we have shown.

These advantages are not available in an ordinary coherent state. While a coherent

state is generated by a one-photon laser, a generalized coherent state may be obtained

from a two-photon laser. For this purpose, consider the general quadratic Hamiltonian

H = iw flaa+fa 2 +f 2 a' af+f a+f 3 af , (8)

where the c-numbers f. may be time-dependent. The unitary time-development oper-

ator U(t, t ) corresponding to (8) transforms the vacuum state I0) at to = 0 to a state

PI(t))g at time t with (t), v(t) independent of f3. Any ±, v, P can be obtained by a proper

choice of the f. This U(t, t ) is readily calculated explicitly by normal ordering tech-
3

niques.

Under this U(t, t ), a generalized coherent state will remain a generalized coherent

state for all time, but with p., v time-variant. For example, when fl = 1, fz = constant,

f3 = 0 with % =(1-41f22) 1/2 > 0, a p) at t = 0 is changed to (2) with (t) = p and

(t) = cos Xkt + (i/k) sin kwt, v(t) = i(2f 2 /k) sin Xwt. The quantum noise is oscillatory
1in this case, but monotone behavior can also be obtained. Thus when fl = 1, f 2 =tanh

(4 ecot) - ic0 ' f3 = 0, we get (Aa2 (t)) = exp(-4wc t), and so forth. For the resonant
iwt - iwt

case fl = 1, f 2
= Co exp(-2iwt), f3 = 0, we have p(t) = e cosh 2ct, v(t) = ie sinh 2cot,

and IP(t))g becomes the minimum uncertainty state for a' = a exp[i(wt-r/4)] with
(a 1 (t)) = exp(-4cot ) .
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An interpretation of the radiation Hamiltonian (8) can be given as the atom-field

interaction in stimulated two-photon emission. (A somewhat more complicated inter-

pretation as the photon interaction in a degenerate parametric process can also be

given.) Four possible configurations (Fig. XIV-1) can be distinguished; population

inversion is required in all cases. In Fig.

Fig. XIV-1.

XIV-1, cases (a) and (c) correspond to an

Transition processes for stimulated two-photon emission. In
cases (a) and (c) the gain is obtained through a large external
pump field at frequency w; in cases (b) and (d) the gain is
initially obtained from the usual one-photon lasing mechanism.

initial radiation state p having finite tr pa a with f 3 = 0; cases (b) and (d) correspond

to an initial 10) with f 3 * 0. In cases (a) and (b), f2 is proportional to an atomic polar-

ization, whereas in (c) and (d) it is proportional to the square of the polarization; f3 is

always proportional to a polarization. Note that fl must always be 1 in order that H

include the free radiation energy at frequency w.

When such a quantum oscillator operates far above threshold, the fluctuations in

atomic polarizations are small physically so that the polarizations may be treated as

c-numbers in a first approximation. Mathematically the amplitude stabilization and a

phase linewidth inversely proportional to the average photon number are general features

of self-sustained oscillators, quantum or classical. 4 ' 5 Therefore, a device of this type

operating far above threshold can be expected to produce a state I P)g with further small

fluctuations in P, in a way exactly analogous to ordinary lasers (f1 = 1, f 2 = 0) where la)

is produced with small fluctuations in a.4,1 An investigation of the detailed average and

statistical behavior of such a two-photon laser with a full quantum treatment of the atoms
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can be carried out with existing techniques.4, 3

There have been many experimental observations of two-photon processes, including

spontaneous 6 and enhanced 7 two-photon emission, although two photons of different fre-

quencies are usually involved. Stimulated two-photon emission was first proposed for
8

giant pulse generation. There is no apparent reason why an oscillator such as that in

Fig. XIV-1 cannot actually be achieved.

When the processes illustrated by Fig. XIV-1, cases (a) and (c), are used for ampli-

fication of the incoming radiation with f 3 = 0 in (8), an initial IP) becomes a p)g with

the same P; that is, U(t, to) I) = P )g According to (3) the average field then changes

from P to pL P - vP . In general, this process may be interpreted as the action of one

linear amplifier and one linear attenuator acting separately on the two quadrature com-

ponents P1 and Pz. For example, when ., v are real, we obtain g(PI alP)g = (1-0 1

and g( P a 2 I P )g = (I+v)p 2 . This phase-dependent behavior of the two-photon amplifier can

be physically understood by observing its similarity to a degenerate parametric ampli-

fier. Note that the quantum noises in al and a2 will be correspondingly attenuated and

amplified so that the signal-to-noise ratios (S/N) 1 and (S/N)2 remain invariant for all

time whenever f3 = 0. Such invariance, of course, is required by the uncertainty

principle. This process should not be confused with the possibility of obtaining through

a different process a higher (S/N) 1 in a transmitter state I P)g under the meaningful

constraint of a fixed radiative power. Since the two-photon process operates as an

amplifier in the region above threshold, it provides a mechanism for the practical

realization of an ideal linear amplifier which we shall not discuss here.
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B. ESTIMATION WITH FEEDBACK FOR DOUBLY STOCHASTIC

POISSON PROCESSES

National Science Foundation (Grant GK-41464)

Stanley R. Robinson

1. Introduction

In this report we consider the structure and performance of a class of causal, mini-

mum mean-square error (MMSE) estimators of a Gauss-Markov process observed

through a conditional Poisson process. Results are derived for the case of a scalar

observation and presented without proof for the vector observation case. Applications

to closed-loop phase estimation in optical communication receivers are discussed.

2. Estimator Structure with Feedback

Assume that the Gauss-Markov process of interest has a finite-state representation

described by the Ito equation

dxt = F x dt + G dw-t t-t -t -t

t = Htx x = o'

where F, G, and H may be time-variant matrices, and {wt;t >to} is a standardized

vector Wiener process.

We wish to estimate yt from the observation record of a doubly stochastic Poisson

process (DSPP) Nt t = {N ; to <a-< t} whose rate parameter, because of optical feed-

back introduced at the receiver, has the particular form

T A
= HcT (t- t ) + X.

Here the elements of the vector c and X may be time-variant (but known) and inde-
- o

pendent of the process ,t' the superscript T indicates transpose, and t is the causal
t-

MMSE estimate of -t: = Eyt Ntt]

The exact stochastic differential equation for the causal MMSE estimate can be

shown 1 , 2 to be

d = F x dt + Hct [dNt-kodt ]  (1)
t -t-t -t t _t 0t-
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t = Htxt; t = E[xo] '

where A is the conditional error covariance t = E (xt-xt)(X -t ) N The exact

conditional covariance is described by the Ito equation:

d-t = ( + _tF +tT dt -dt M t(ko - ' dNt

+ E (xt-xt)(xt-xt) (xt-xt)T Hc Nt [dN -Xdt],
Iitht _ =" cct HIN ]0 t- 0

with -ot - cov (x ) (a priori covariance) and M = THc .
o 2

Following Snyder, we seek to approximate the conditional covariance equation by

dropping the last term on the right. In contrast to Snyder's approximation, it is suf-
ficient to assume here that the conditional probability density of the errors is symmetri-

cal about the origin. This appears intuitively to be a very reasonable assumption. The

resulting approximate conditional covariance equation is given by

( T T -z
dLt = tt +t't +Gt dt -tM to ciNt (2)

and I = F .
--o

O

Equations 1 and 2 describe the structure of the causal MMSE estimator, consistently

with the assumptions made thus far. We observe that (2) is in the familiar matrix
3-5Riccati form that appears in many other estimation problems, except that it is

coupled to the observations so that conditional performance cannot be precomputed.

Moreover, because of the nature of the data (dNt/dt is impulsive at event times), imple-
mentation of (2) is particularly simple. Given the set of event times: I = {ti; t i are event
times E(to, t), and i = 1, 2,...), we can express the solution for Z.t by the recursion
relation

p
T T

= o v T (t, t NTv (t, t),- 2 1 o -- v v2 2( o _v 2  -Nti VzV2 i
i=O

where p is the largest index in I,

1(t, t ) = V I o

v2v 1  2 vv z
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is the transition matrix of the linear system

-iF T 0V1 ft - 1

N T
v -G T F v

and

; i=O-o

N=-t.
1 -2

-t i- -t i 

Observe that all the _ are precomputable and by the nature of the transition matrix (for

a stable system), the conditional covariance will evolve in time toward the a priori
3-6

covariance in a "long enough time interval" where there are no events.

3. Estimator Performance

Since the conditional covariance is data-dependent, other methods for computation

of performance are of interest. We shall determine first the Cramer-Rao lower bound

for any causal unbiased estimate of t based on the data Nt t and then show that the

conditional covariance averaged over the statistics of the data (i. e., the actual MS error

covariance) is precisely that given by the lower-bound equation. Although estimation

of t is the desired result, we shall investigate the performance of estimation of xt ,

since for the stated linear observation knowing the estimation performance of xt is suf-

ficient to determine the performance of the estimates of Yt.

The lower bound for the covariance of any causal unbiased estimate _xt , computed
7

from the data Nt t' is given by

E[(xt-xt -xt J E (xt-xt) (xt) & Vt, (3)

where

T T
V =FtV t +VF +GG T- V = V (4)

t t t t t -tt -t t t t -o

and
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[-1 +X-3[(T t +... M

-1
SX M. (5)

S-

Therefore, under the assumption that higher moments of the error are small relative

to inverse powers of Xo , we see that the lower bound is given by (3) with Qt given by (5).

In contrast, now consider the actual MS performance of the estimator in question.

We denote E[Lt] = -t and take the expected value of (2) to obtain1

- -T T -1 -
Ft t + _F +G Gt - E[- tM It] 1 -L t =

= -- _ 0 -0
o

The last term on the right involves moments that we are unable to calculate, so we seek

to solve the problem indirectly by rewriting the equation as

T T - -1
Z=FZ+FT +G G -AG-M X (6)-t -t-t t -t-t - -t- -t 0

and

-1
ac = E[(_t-_ t ) M(_zt- t)] 'o

We can easily verify that AG is a positive semidefinite matrix. Therefore, if we assume

that solutions exist to (4, with 5) and (6) and denote their solutions respectively by

P = P + AP and P., we can determine an equation for AP:
-1 -2 -2,

T
AP = (Ft-_PzM)AP + AP(Ft-PzM) + AG - AP MAP; APt = 0.

Again, the equation for AP is in the form of the widely studied matrix Riccati equation.

One property of the solution is that AP is a positive semidefinite matrix.5689 That

is, P - P > 0. P is the solution to the lower-bound equation, however, so that

P2 - P >  0. These conditions can only be met simultaneously if _P = -P ; that is, the

actual error covariance is precisely equal to the lower-bound covariance. (An ancillary

result is AP = AG = 0.) Therefore the estimator is efficient in the sense that its error

covariance is equal to that computed by using the Cramer-Rao lower bound. The fact

that an estimator for a DSPP with a rate parameter that depends only on a linear func-

tion of the estimation error is efficient has a striking parallel with a linear observation

of a Gaussian signal process in additive Gaussian noise. 3, 7
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4. Extension to Detector Arrays

Our results can be extended to the use of detector arrays by using the data
{N ; t <a- < t}, a doubly stochastic vector Poisson process with conditionally independent
components. Assume that there are m elements in the array and that the vector DSPP

has a vector rate parameter:

t T +

= CHt(xt - ) + o

where C = [cl 2 c ... ] andk = [ 1) (2) .(m) By using the same assumptions
10as in the scalar case, the estimator structure can be shown to be

4 A T -1dx = F x dt + PH CA [dNt-Xdt,

where

A = diagonal matrix = [0

dNt = [dN dN 2 ... dNm]T

m

dP =FP +PF +GG - T P c i) dN.
-t -t-t -t-t -t-t 1 -t-t\ 0 1

i=l

P =C.-t -o

Again, the estimator is efficient and if we denote Wt = E[Pt], Wt is described by

m

dW =FW +WF +GG T_ H T C.CTtt(%dt t t +G - W t -t --10
i=l

W =C.
Wt -o

5. Applications: Phase Modulation in a Free-Space Channel

As an example assume that we receive a single plane wave with complex envelope:

Us = At exp[+jt], where At is a known amplitude and qt is the analog message process

of interest with the scalar state representation d t = -k tdt + Nf/-k dwt. The closed-loop
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LOC AL
REFERANCE
GENERATOR

PHASE PLATE\ u

Fig. XIV-2. Closed-loop estimator.

estimator, shown in Fig. XIV-2, involves adding a locally generated estimate reference

signal. Two types of reference will be considered:

"Heterodyne" Uref = Bt exp[+j2rflFt +t]

"Homodyne" Uref = Bt exp[+j($t + 7/2)].

Here the quotation marks indicate that the usual assumption of B >> A will not be made

unless it is explicitly stated. 1 12 Under the assumption of small error (so that

sin (c-4) = p - k), the rate parameters are in the form ct = c(pt-4 t ) + Xo , where

c = 2ABP

Homodyne
k o = [A 2 + B 2 ] + Xd

c = 2ABP sin (2rf lFt)

Heterodyne

S= Heterodyne [A2 + B 2 + 2AB cos (2lFt)] + Xd

with P = -Ad/hv. Here tl is the detector quantum efficiency, hv is the energy of a

photon, Ad is the detector area, and Xd is the dark current rate parameter.

We note that the heterodyne rate parameter is similar in form to a phase subcarrier

modulation considered by others, 13, 14 for which it has been shown by simulation that

the estimator is asymptotically efficient. The estimator structure is a special applica-

tion of Eqs. 1 and 2 and will not be repeated here. We note, however, that the structure

is quite similar to a phase-locked loop (PLL) where we have "closed the loop" opti-

cally. 1 5

The mean-square error performance of the two systems is also of interest.
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Using (4) and assuming that the system is in statistical steady state so that V = 0, we can
compute the performance from the algebraic equation. In the heterodyne case, we

must also assume that flF is large enough that we need only consider the slowly varying
components of c/k •o

E[(t-ct 
2]

steady 1
state

=0
ss

+ 2c 2/ok) 1/2

It is interesting that in both cases the error is decreased as B is increased.

large values of B

Homodyne

For

2
0-
ss

Heterodyne
2
ss

2 1/2
1+ +

2

21/2

1 + 1+
4PA"

k

In this limit both performance and structure of the estimator are precisely those for

the classical observation model with additive Gaussian noise. 1 5 16
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