378 research outputs found

    Hawaii Geothermal Project : quarterly progress report no. 3 (December 1, 1973 through February 28, 1974)

    Get PDF
    Discussion of early exploration research conducted under the Hawaii Geothermal Project.Support for project provided by National Science Foundation, State of Hawaii, County of Hawai

    Homodyne detection for measuring internal quantum correlations of optical pulses

    Full text link
    A new method is described for determining the quantum correlations at different times in optical pulses by using balanced homodyne detection. The signal pulse and sequences of ultrashort test pulses are superimposed, where for chosen distances between the test pulses their relative phases and intensities are varied from measurement to measurement. The correlation statistics of the signal pulse is obtained from the time-integrated difference photocurrents measured.Comment: 7 pages, A4.sty include

    A prospective cohort study comparing the reactogenicity of trivalent influenza vaccine in pregnant and non-pregnant women

    Get PDF
    Background: Influenza vaccination during pregnancy can prevent serious illness in expectant mothers and provide protection to newborns; however, historically uptake has been limited due to a number of factors, including safety concerns. Symptomatic complaints are common during pregnancy and may be mistakenly associated with reactions to trivalent influenza vaccine (TIV). To investigate this, we compared post-vaccination events self-reported by pregnant women to events reported by non-pregnant women receiving TIV. Methods: A prospective cohort of 1,086 pregnant women and 314 non-pregnant female healthcare workers (HCWs) who received TIV between March-May 2014 were followed-up seven days post-vaccination to assess local and systemic adverse events following immunisation (AEFIs). Women were surveyed by text message regarding perceived reactions to TIV. Those reporting an AEFI completed an interview by telephone or mobile phone to ascertain details. Logistic regression models adjusting for age and residence were used to compare reactions reported by pregnant women and non-pregnant HCWs. Results: Similar proportions of pregnant women and non-pregnant, female HCWs reported ≥1 reaction following vaccination with TIV (13.0% and 17.3%, respectively; OR = 1.2 [95% CI: 0.8-1.8]). Non-pregnant, female HCWs were more likely to report fever or headache compared to pregnant women (OR: 4.6 [95% CI 2.1-10.3] and OR: 2.2 [95% CI 1.0-4.6], respectively). No other significant differences in reported symptoms were observed. No serious vaccine-associated adverse events were reported, and less than 2% of each group sought medical advice for a reaction. Conclusions: We found no evidence suggesting pregnant women are more likely to report adverse events following influenza vaccination when compared to non-pregnant female HCWs of similar age, and in some cases, pregnant women reported significantly fewer adverse events. These results further support the safety of TIV administered in pregnant women

    Geothermal reservoir engineering of HGP-A : a summary report of activities up to October 31, 1976. Technical report No. 19

    Get PDF
    The initial four holes were drilled in 1961 by the Hawaii Thermal Power Company. Recent measurements have shown that these temperatures have not change significantly. It is interesting to note that TTW #2 shows virtually a continuous increase in temperature with depth, with a sharp gradient from 253 to 262 feet. However, the well had caved in at around 361 feet, when a temperature of 97° was measured at this point in 1975. TTW #3 was measured to the bottom of the well. where a peak temperature of 93°C was measured at around 540 feet. A sharp positive gradient was measured from 460 feet to 540 feet, and a rather sharp negative gradient (not as steep as the positive gradient) from 540 feet to the bottom (Epp and Ha1unen, 1976).The history of geothermal well drilling in Hawaii is reviewed briefly. The following are discussed: the geophysical program, pre-drilling speculative models, geothermal reservoir engineering, the drilling program, the measurement activities, a preliminary reservoir analysis of HGP-A well, and future activities. (MHR)National Science Foundation Research Grant No. GI-38319Energy Research and Development Administration Research Grant No. E(04-3)-1093Department of Energy Contract Number: AC03-76ET2830

    The Haroche-Ramsey experiment as a generalized measurement

    Get PDF
    A number of atomic beam experiments, related to the Ramsey experiment and a recent experiment by Brune et al., are studied with respect to the question of complementarity. Three different procedures for obtaining information on the state of the incoming atom are compared. Positive operator-valued measures are explicitly calculated. It is demonstrated that, in principle, it is possible to choose the experimental arrangement so as to admit an interpretation as a joint non-ideal measurement yielding interference and ``which-way'' information. Comparison of the different measurements gives insight into the question of which information is provided by a (generalized) quantum mechanical measurement. For this purpose the subspaces of Hilbert-Schmidt space, spanned by the operators of the POVM, are determined for different measurement arrangements and different values of the parameters.Comment: REVTeX, 22 pages, 5 figure

    An air-stable DPP-thieno-TTF copolymer for single-material solar cell devices and field effect transistors

    Get PDF
    Following an approach developed in our group to incorporate tetrathiafulvalene (TTF) units into conjugated polymeric systems, we have studied a low band gap polymer incorporating TTF as a donor component. This polymer is based on a fused thieno-TTF unit that enables the direct incorporation of the TTF unit into the polymer, and a second comonomer based on the diketopyrrolopyrrole (DPP) molecule. These units represent a donor–acceptor copolymer system, p(DPP-TTF), showing strong absorption in the UV–visible region of the spectrum. An optimized p(DPP-TTF) polymer organic field effect transistor and a single material organic solar cell device showed excellent performance with a hole mobility of up to 5.3 × 10–2 cm2/(V s) and a power conversion efficiency (PCE) of 0.3%, respectively. Bulk heterojunction organic photovoltaic devices of p(DPP-TTF) blended with phenyl-C71-butyric acid methyl ester (PC71BM) exhibited a PCE of 1.8%

    Thermal Degradation and Fire Properties of Fungal Mycelium and Mycelium: Biomass Composite Materials

    Get PDF
    Mycelium and mycelium-biomass composites are emerging as new sustainable materials with useful flame-retardant potentials. Here we report a detailed characterisation of the thermal degradation and fire properties of fungal mycelium and mycelium-biomass composites. Measurements and analyses are carried out on key parameters such as decomposition temperatures, residual char, and gases evolved during pyrolysis. Pyrolysis flow combustion calorimetry (PCFC) evaluations reveal that the corresponding combustion propensity of mycelium is significantly lower compared to poly(methyl methacrylate) (PMMA) and polylactic acid (PLA), indicating that they are noticeably less prone to ignition and flaming combustion, and therefore safer to use. The hyphal diameters of mycelium decrease following pyrolysis. Cone calorimetry testing results show that the presence of mycelium has a positive influence on the fire reaction properties of wheat grains. This improvement is attributable to the relatively higher charring tendency of mycelium compared to wheat grain, which reduces the heat release rate (HRR) by acting as a thermal insulator and by limiting the supply of combustible gases to the flame front. The mycelium growth time has been found to yield no significant improvements in the fire properties of mycelium-wheat grain composites

    Quantum singular oscillator as a model of two-ion trap: an amplification of transition probabilities due to small time variations of the binding potential

    Full text link
    Following the paper by M. Combescure [Ann. Phys. (NY) 204, 113 (1990)], we apply the quantum singular time dependent oscillator model to describe the relative one dimensional motion of two ions in a trap. We argue that the model can be justified for low energy excited states with the quantum numbers nnmax100n\ll n_{max}\sim 100, provided that the dimensionless constant characterizing the strength of the repulsive potential is large enough, g105g_*\sim 10^5. Time dependent Gaussian-like wave packets generalizing odd coherent states of the harmonic oscillator, and excitation number eigenstates are constructed. We show that the relative motion of the ions, in contradistinction to its center of mass counterpart, is extremely sensitive to the time dependence of the binding harmonic potential, since the large value of gg_* results in a significant amplification of the transition probabilities between energy eigenstate even for slow time variations of the frequency.Comment: 19 pages, LaTeX, 5 eps-figures, to appear on Phys. Rev. A, one reference correcte

    Quantum Robots and Environments

    Get PDF
    Quantum robots and their interactions with environments of quantum systems are described and their study justified. A quantum robot is a mobile quantum system that includes a quantum computer and needed ancillary systems on board. Quantum robots carry out tasks whose goals include specified changes in the state of the environment or carrying out measurements on the environment. Each task is a sequence of alternating computation and action phases. Computation phase activities include determination of the action to be carried out in the next phase and possible recording of information on neighborhood environmental system states. Action phase activities include motion of the quantum robot and changes of neighborhood environment system states. Models of quantum robots and their interactions with environments are described using discrete space and time. To each task is associated a unitary step operator T that gives the single time step dynamics. T = T_{a}+T_{c} is a sum of action phase and computation phase step operators. Conditions that T_{a} and T_{c} should satisfy are given along with a description of the evolution as a sum over paths of completed phase input and output states. A simple example of a task carrying out a measurement on a very simple environment is analyzed. A decision tree for the task is presented and discussed in terms of sums over phase paths. One sees that no definite times or durations are associated with the phase steps in the tree and that the tree describes the successive phase steps in each path in the sum.Comment: 30 Latex pages, 3 Postscript figures, Minor mathematical corrections, accepted for publication, Phys Rev

    Pneumococcal conjugate vaccine implementation in middle-income countries

    Get PDF
    Since 2000, the widespread adoption of pneumococcal conjugate vaccines (PCVs) has had a major impact in the prevention of pneumonia. Limited access to international financial support means some middle-income countries (MICs) are trailing in the widespread use of PCVs. We review the status of PCV implementation, and discuss any needs and gaps related to low levels of PCV implementation in MICs, with analysis of possible solutions to strengthen the PCV implementation process in MICs
    corecore