67 research outputs found
Handling Heavy Occlusion in Dense Crowd Tracking by Focusing on the Heads
With the rapid development of deep learning, object detection and tracking
play a vital role in today's society. Being able to identify and track all the
pedestrians in the dense crowd scene with computer vision approaches is a
typical challenge in this field, also known as the Multiple Object Tracking
(MOT) challenge. Modern trackers are required to operate on more and more
complicated scenes. According to the MOT20 challenge result, the pedestrian is
4 times denser than the MOT17 challenge. Hence, improving the ability to detect
and track in extremely crowded scenes is the aim of this work. In light of the
occlusion issue with the human body, the heads are usually easier to identify.
In this work, we have designed a joint head and body detector in an anchor-free
style to boost the detection recall and precision performance of pedestrians in
both small and medium sizes. Innovatively, our model does not require
information on the statistical head-body ratio for common pedestrians detection
for training. Instead, the proposed model learns the ratio dynamically. To
verify the effectiveness of the proposed model, we evaluate the model with
extensive experiments on different datasets, including MOT20, Crowdhuman, and
HT21 datasets. As a result, our proposed method significantly improves both the
recall and precision rate on small & medium sized pedestrians and achieves
state-of-the-art results in these challenging datasets.Comment: Accepted at AJCAI 202
Understanding the Impact of Image Quality and Distance of Objects to Object Detection Performance
Deep learning has made great strides for object detection in images. The
detection accuracy and computational cost of object detection depend on the
spatial resolution of an image, which may be constrained by both the camera and
storage considerations. Compression is often achieved by reducing either
spatial or amplitude resolution or, at times, both, both of which have
well-known effects on performance. Detection accuracy also depends on the
distance of the object of interest from the camera. Our work examines the
impact of spatial and amplitude resolution, as well as object distance, on
object detection accuracy and computational cost. We develop a
resolution-adaptive variant of YOLOv5 (RA-YOLO), which varies the number of
scales in the feature pyramid and detection head based on the spatial
resolution of the input image. To train and evaluate this new method, we
created a dataset of images with diverse spatial and amplitude resolutions by
combining images from the TJU and Eurocity datasets and generating different
resolutions by applying spatial resizing and compression. We first show that
RA-YOLO achieves a good trade-off between detection accuracy and inference time
over a large range of spatial resolutions. We then evaluate the impact of
spatial and amplitude resolutions on object detection accuracy using the
proposed RA-YOLO model. We demonstrate that the optimal spatial resolution that
leads to the highest detection accuracy depends on the 'tolerated' image size.
We further assess the impact of the distance of an object to the camera on the
detection accuracy and show that higher spatial resolution enables a greater
detection range. These results provide important guidelines for choosing the
image spatial resolution and compression settings predicated on available
bandwidth, storage, desired inference time, and/or desired detection range, in
practical applications
Decision ambiguity is mediated by a late positive potential originating from cingulate cortex
People often make decisions in the face of ambiguous information, but it remains unclear how ambiguity is represented in the brain. We used three types of ambiguous stimuli and combined EEG and fMRI to examine the neural representation of perceptual decisions under ambiguity. We identified a late positive potential, the LPP, which differentiated levels of ambiguity, and which was specifically associated with behavioral judgments about choices that were ambiguous, rather than passive perception of ambiguous stimuli. Mediation analyses together with two further control experiments confirmed that the LPP was generated only when decisions are made (not during mere perception of ambiguous stimuli), and only when those decisions involved choices on a dimension that is ambiguous. A further control experiment showed that a stronger LPP arose in the presence of ambiguous stimuli compared to when only unambiguous stimuli were present. Source modeling suggested that the LPP originated from multiple loci in cingulate cortex, a finding we further confirmed using fMRI and fMRI-guided ERP source prediction. Taken together, our findings argue for a role of an LPP originating from cingulate cortex in encoding decisions based on task-relevant perceptual ambiguity, a process that may in turn influence confidence judgment, response conflict, and error correction
Degradable mesoporous semimetal antimony nanospheres for near-infrared II multimodal theranostics.
Metallic and semimetallic mesoporous frameworks are of great importance owing to their unique properties and broad applications. However, semimetallic mesoporous structures cannot be obtained by the traditional template-mediated strategies due to the inevitable hydrolytic reaction of semimetal compounds. Therefore, it is yet challenging to fabricate mesoporous semimetal nanostructures, not even mention controlling their pore sizes. Here we develop a facile and robust selective etching route to synthesize monodispersed mesoporous antimony nanospheres (MSbNSs). The pore sizes of MSbNSs are tunable by carefully controlling the partial oxidation of Sb nuclei and the selective etching of the as-formed Sb2O3. MSbNSs show a wide absorption from visible to second near-infrared (NIR-II) region. Moreover, PEGylated MSbNSs are degradable and the degradation mechanism is further explained. The NIR-II photothermal performance of MSbNSs is promising with a high photothermal conversion efficiency of ~44% and intensive NIR-II photoacoustic signal. MSbNSs show potential as multifunctional nanomedicines for NIR-II photoacoustic imaging guided synergistic photothermal/chemo therapy in vivo. Our selective etching process would contribute to the development of various semimetallic mesoporous structures and efficient multimodal nanoplatforms for theranostics
Identification ferroptosis-related hub genes and diagnostic model in Alzheimer’s disease
BackgroundFerroptosis is a newly defined form of programmed cell death and plays an important role in Alzheimer’s disease (AD) pathology. This study aimed to integrate bioinformatics techniques to explore biomarkers to support the correlation between ferroptosis and AD. In addition, further investigation of ferroptosis-related biomarkers was conducted on the transcriptome characteristics in the asymptomatic AD (AsymAD).MethodsThe microarray datasets GSE118553, GSE132903, GSE33000, and GSE157239 on AD were downloaded from the GEO database. The list of ferroptosis-related genes was extracted from the FerrDb website. Differentially expressed genes (DEGs) were identified by R “limma” package and used to screen ferroptosis-related hub genes. The random forest algorithm was used to construct the diagnostic model through hub genes. The immune cell infiltration was also analyzed by CIBERSORTx. The miRNet and DGIdb database were used to identify microRNAs (miRNAs) and drugs which targeting hub genes.ResultsWe identified 18 ferroptosis-related hub genes anomalously expressed in AD, and consistent expression trends had been observed in both AsymAD The random forest diagnosis model had good prediction results in both training set (AUC = 0.824) and validation set (AUC = 0.734). Immune cell infiltration was analyzed and the results showed that CD4+ T cells resting memory, macrophages M2 and neutrophils were significantly higher in AD. A significant correlation of hub genes with immune infiltration was observed, such as DDIT4 showed strong positive correlation with CD4+ T cells memory resting and AKR1C2 had positive correlation with Macrophages M2. Additionally, the microRNAs (miRNAs) and drugs which targeting hub genes were screened.ConclusionThese results suggest that ferroptosis-related hub genes we screened played a part in the pathological progression of AD. We explored the potential of these genes as diagnostic markers and their relevance to immune cells which will help in understanding the development of AD. Targeting miRNAs and drugs provides new research clues for preventing the development of AD
Integrated analysis of single-cell RNA-seq and bulk RNA-seq reveals RNA N6-methyladenosine modification associated with prognosis and drug resistance in acute myeloid leukemia
IntroductionAcute myeloid leukemia (AML) is a type of blood cancer that is identified by the unrestricted growth of immature myeloid cells within the bone marrow. Despite therapeutic advances, AML prognosis remains highly variable, and there is a lack of biomarkers for customizing treatment. RNA N6-methyladenosine (m6A) modification is a reversible and dynamic process that plays a critical role in cancer progression and drug resistance.MethodsTo investigate the m6A modification patterns in AML and their potential clinical significance, we used the AUCell method to describe the m6A modification activity of cells in AML patients based on 23 m6A modification enzymes and further integrated with bulk RNA-seq data.ResultsWe found that m6A modification was more effective in leukemic cells than in immune cells and induced significant changes in gene expression in leukemic cells rather than immune cells. Furthermore, network analysis revealed a correlation between transcription factor activation and the m6A modification status in leukemia cells, while active m6A-modified immune cells exhibited a higher interaction density in their gene regulatory networks. Hierarchical clustering based on m6A-related genes identified three distinct AML subtypes. The immune dysregulation subtype, characterized by RUNX1 mutation and KMT2A copy number variation, was associated with a worse prognosis and exhibited a specific gene expression pattern with high expression level of IGF2BP3 and FMR1, and low expression level of ELAVL1 and YTHDF2. Notably, patients with the immune dysregulation subtype were sensitive to immunotherapy and chemotherapy.DiscussionCollectively, our findings suggest that m6A modification could be a potential therapeutic target for AML, and the identified subtypes could guide personalized therapy
The efficacy and neural mechanism of acupuncture therapy in the treatment of visceral hypersensitivity in irritable bowel syndrome
Irritable Bowel Syndrome (IBS) is a complex functional gastrointestinal disorder primarily characterized by chronic abdominal pain, bloating, and altered bowel habits. Chronic abdominal pain caused by visceral Hypersensitivity (VH) is the main reason why patients with IBS seek medication. Significant research effort has been devoted to the efficacy of acupuncture as a non-drug alternative therapy for visceral-hyperalgesia-induced IBS. Herein, we examined the central and peripheral analgesic mechanisms of acupuncture in IBS treatment. Acupuncture can improve inflammation and relieve pain by reducing 5-hydroxytryptamine and 5-HT3A receptor expression and increasing 5-HT4 receptor expression in peripheral intestinal sensory endings. Moreover, acupuncture can also activate the transient receptor potential vanillin 1 channel, block the activity of intestinal glial cells, and reduce the secretion of local pain-related neurotransmitters, thereby weakening peripheral sensitization. Moreover, by inhibiting the activation of N-methyl-D-aspartate receptor ion channels in the dorsal horn of the spinal cord and anterior cingulate cortex or releasing opioids, acupuncture can block excessive stimulation of abnormal pain signals in the brain and spinal cord. It can also stimulate glial cells (through the P2X7 and prokinetic protein pathways) to block VH pain perception and cognition. Furthermore, acupuncture can regulate the emotional components of IBS by targeting hypothalamic-pituitary-adrenal axis-related hormones and neurotransmitters via relevant brain nuclei, hence improving the IBS-induced VH response. These findings provide a scientific basis for acupuncture as an effective clinical adjuvant therapy for IBS pain
Extending the defect tolerance of halide perovskite nanocrystals to hot carrier cooling dynamics
Defect tolerance is a critical enabling factor for efficient lead-halide perovskite materials, but the current understanding is primarily on band-edge (cold) carriers, with significant debate over whether hot carriers can also exhibit defect tolerance. Here, this important gap in the field is addressed by investigating how intentionally-introduced traps affect hot carrier relaxation in CsPbX3 nanocrystals (X = Br, I, or mixture). Using femtosecond interband and intraband spectroscopy, along with energy-dependent photoluminescence measurements and kinetic modelling, it is found that hot carriers are not universally defect tolerant in CsPbX3, but are strongly correlated to the defect tolerance of cold carriers, requiring shallow traps to be present (as in CsPbI3). It is found that hot carriers are directly captured by traps, instead of going through an intermediate cold carrier, and deeper traps cause faster hot carrier cooling, reducing the effects of the hot phonon bottleneck and Auger reheating. This work provides important insights into how defects influence hot carriers, which will be important for designing materials for hot carrier solar cells, multiexciton generation, and optical gain media
- …