266 research outputs found

    Comparing Classical Portfolio Optimization and Robust Portfolio Optimization on Black Swan Events

    Get PDF
    Black swan events, such as natural catastrophes and manmade market crashes, historically have a drastic negative influence on investments; and there is a discrepancy on losses caused by these two types of disasters. In general, there is a recovery and it is of interest to understand what type of investment strategies lead to better performance for investors. In this thesis we study classical portfolio optimization, robust portfolio optimization and some historical black swan events. We compare two main strategies: mean variance optimization vs robust portfolio optimization on two types of black swan events: natural vs anthropogenic. The comparison illustrates that robust portfolio optimization is much more conservative, and has a shorter recovery time than classical portfolio optimization. Moreover, the losses in the stock investment resulted from a natural disaster are very minor compared to the losses resulted from an anthropogenic market crash

    Calculation and Analysis of the Instream Ecological Flow for the Irtysh River

    Get PDF
    AbstractInstream ecological flow is essential determinant of river health. In this paper, the monthly minimum flow calculation method, the (new) monthly frequency calculation method were applied to calculate and evaluate the minimum instream ecological flow and the optimal instream ecological flow for the Irtysh River, and the different criteria of instream ecological flow was calculated by the improved Tennant method. It is expected to provide a scientific basis for the reasonable allocation of water resource in Irtysh River basin by calculating the instream ecological flow

    Hydrological Variation Characteristics of Rivers in Humid Region: Oujiang River, China

    Get PDF
    AbstractOujiang River was selected as the case study, and a dataset of daily flow series at Xuren Station was used to explore the hydrologic characteristics of rivers in humid areas, by using the ‘Indicators of Hydrologic Alteration’ approach and ‘Range of Variability Approach’. Results showed that the overall alteration of the hydrological regime for Oujiang River belonged to the low alteration category, and some key eco-hydrological characteristics should be protected in certain key periods to maintain the integrality and health status of river ecosystems

    Study on the Inhibitory Effects of Ephedra Aconite Asarum

    Get PDF
    Dendritic cells (DCs) can secrete cytokines stimulated by lipopolysaccharide (LPS), which leads to not just acute inflammatory responses but also Th1 polarization. Furtherly, chronic inflammation or autoimmune diseases could be triggered. As a classic Traditional Chinese Medicine formula, Ephedra Aconite Asarum Decoction with the main ingredients of ephedrine and hypaconitine can show effect on anti-inflammation and immunoregulation. But it remains unclear whether Ephedra Aconite Asarum Decoction controls DCs. In this study, we investigated the effects of Ephedra Aconite Asarum Decoction on LPS-induced bone marrow-derived DCs (BMDCs) in vitro. We found that Ephedra Aconite Asarum Decoction lowered surface costimulators on DCs and reduced the expression of Th1 type cytokines. Yet it is slightly beneficial for shifting to Th2. Our work reveals that the Ephedra Aconite Asarum Decoction can regulate Th1 inflammation through intervening DCs

    PDGF-C Mediates the Angiogenic and Tumorigenic Properties of Fibroblasts Associated with Tumors Refractory to Anti-VEGF Treatment

    Get PDF
    SummaryTumor- or cancer-associated fibroblasts (TAFs or CAFs) from different tumors exhibit distinct angiogenic and tumorigenic properties. Unlike normal skin fibroblasts or TAFs from TIB6 tumors that are sensitive to anti-VEGF treatment (TAF-TIB6), TAFs from resistant EL4 tumors (TAF-EL4) can stimulate TIB6 tumor growth even when VEGF is inhibited. We show that platelet-derived growth factor C (PDGF-C) is upregulated in TAFs from resistant tumors. PDGF-C-neutralizing antibodies blocked the angiogenesis induced by such TAFs in vivo, slowed the growth of EL4 and admixture (TAF-EL4 + TIB6) tumors, and exhibited additive effects with anti-VEGF-A antibodies. Hence, our data reveal an additional mechanism for TAF-mediated tumorigenesis and suggest that some tumors may overcome inhibition of VEGF-mediated angiogenesis through upregulation of PDGF-C

    Simple Random Sampling-Based Probe Station Selection for Fault Detection in Wireless Sensor Networks

    Get PDF
    Fault detection for wireless sensor networks (WSNs) has been studied intensively in recent years. Most existing works statically choose the manager nodes as probe stations and probe the network at a fixed frequency. This straightforward solution leads however to several deficiencies. Firstly, by only assigning the fault detection task to the manager node the whole network is out of balance, and this quickly overloads the already heavily burdened manager node, which in turn ultimately shortens the lifetime of the whole network. Secondly, probing with a fixed frequency often generates too much useless network traffic, which results in a waste of the limited network energy. Thirdly, the traditional algorithm for choosing a probing node is too complicated to be used in energy-critical wireless sensor networks. In this paper, we study the distribution characters of the fault nodes in wireless sensor networks, validate the Pareto principle that a small number of clusters contain most of the faults. We then present a Simple Random Sampling-based algorithm to dynamic choose sensor nodes as probe stations. A dynamic adjusting rule for probing frequency is also proposed to reduce the number of useless probing packets. The simulation experiments demonstrate that the algorithm and adjusting rule we present can effectively prolong the lifetime of a wireless sensor network without decreasing the fault detected rate

    miR-200a attenuated oxidative stress, inflammation, and apoptosis in dextran sulfate sodium-induced colitis through activation of Nrf2

    Get PDF
    IntroductionOxidative stress and inflammatory responses are critical factors in ulcerative colitis disease pathogenesis. Nuclear factor erythroid 2-related factor 2 (Nrf2) modulates oxidative stress and suppresses inflammatory responses, and the protective benefits of Nrf2 activation have been associated with the therapy of ulcerative colitis. MicroRNA-200a (miR-200a) could target Kelch-like ECH-associated protein 1 (Keap1) and activate the Nrf2-regulated antioxidant pathway. Nevertheless, whether miR-200a modulates the Keap1/Nrf2 pathway in dextran sulfate sodium (DSS)-induced colonic damage is unknown. Here, our research intends to examine the impact of miR-200a in the model of DSS-induced colitis.MethodsPrior to DSS intervention, we overexpressed miR-200a in mice for four weeks using an adeno-associated viral (AAV) vector to address this problem. ELISA detected the concentration of inflammation-related cytokines. The genes involved in inflammatory reactions and oxidative stress were identified using quantitative reverse transcription-polymerase chain reaction (qRT-PCR), western blot, and immunofluorescence. Moreover, we applied siRNAs to weakened Nrf2 expression to confirm the hypothesis that miR-200a provided protection via Nrf2.ResultsThe present study discovered miR-200a down-regulation, excessive inflammatory activation, enterocyte apoptosis, colonic dysfunction, and Keap1/Nrf2 antioxidant pathway inactivation in mouse colitis and NCM460 cells under DSS induction. However, our data demonstrated that miR-200a overexpression represses Keap1 and activates the Nrf2 antioxidant pathway, thereby alleviating these adverse alterations in animal and cellular models. Significantly, following Nrf2 deficiency, we failed to observe the protective benefits of miR-200a against colonic damage.DiscussionTaken together, through activating the Keap1/Nrf2 signaling pathway, miR-200a protected against DSS-induced colonic damage. These studies offer an innovative therapeutic approach for ulcerative colitis

    Tuber indicum and T. lijiangense colonization differentially regulates plant physiological responses and mycorrhizosphere bacterial community of Castanopsis rockii seedlings

    Get PDF
    Black truffles and white truffles are widely studied around the world, but their effects on plant growth and physiological responses, and on the mycorrhizosphere bacterial community of the host plant remain unclear. Here, mycorrhizal colonization of Castanopsis rockii by Tuber indicum (Chinese black truffle) and T. lijiangense (Chinese white truffle), respectively, was induced in a greenhouse study, and their effects on host growth, physiological responses and mycorrhizosphere bacterial communities were compared. The results show that colonization of both Tuber species significantly increased leaf photosynthetic rate, leaf P concentration and mycorrhizosphere acid phosphatase activity, as well as richness of mycorrhizosphere bacterial communities of C. rockii seedlings. However, T. indicum colonization on the one hand significantly decreased tartrate content, bacterial acid phosphatase, phoC gene abundance in the mycorrhizosphere, and peroxidase (POD) activity of ectomycorrhizal root tips, but on the other hand increased mycorrhizosphere pH and superoxide dismutase (SOD) of ectomycorrhizal root tips, compared to T. lijiangense colonization. Moreover, principal coordinate and β-diversity analyses show significant differences in mycorrhizosphere bacterial community composition between T. indicum and T. lijiangese colonized C. rockii seedlings. Finally, the relative abundance of the bacterium Agromyces cerinus significantly correlated to mycorrhizosphere acid phosphatase activity and leaf P concentration, suggesting that this bacterium might play an important role in P mobilization and acquisition. Overall, these results suggest that T. indicum and T. lijiangense differently regulate their host plant’s physiological responses and mycorrhizosphere bacterial community
    corecore