193 research outputs found

    Waste to Biofuel by Torrefaction Technology

    Get PDF
    Torrefaction is one of waste to energy (WTE) technologies developing in Taiwan recently, which can reduce the moisture and impurities and increase the energy density of biowaste effectively. To understand the torrefaction characteristics of different biowaste and the influences of different torrefaction conditions, four typical biowaste were selected to carry out the torrefaction experiments. The physical and chemical properties of different biowaste prior to and after torrefaction were analyzed and compared. Experimental results show that the contents of elemental carbon and caloric value of the four biowaste were significantly increased after torrefaction. The increase of combustible and caloric value in bamboo was the greatest among the four biowaste. The caloric value of bamboo can be increased from 1526 kcal/kg to 6104 kcal/kg after 300oC and 1 hour torrefaction. The caloric value of torrefied bamboo was almost four times as the original. The increase of elemental carbon content in wood was the greatest (from 41.03% to 75.24%), and the next was bamboo (from 47.07% to 74.63%). The major parameters which affected the caloric value of torrefied biowaste followed the sequence of biowaste kinds, torrefaction time, and torrefaction temperature. The optimal torrefaction conditions of the experiments were bamboo torrefied at 300oC for 3 hours, and the corresponding caloric value of torrefied bamboo was 5953 kcal/kg. This caloric value is similar to that of brown coal or bituminous coal

    Waste to Biofuel by Torrefaction Technology

    Get PDF
    Torrefaction is one of waste to energy (WTE) technologies developing in Taiwan recently, which can reduce the moisture and impurities and increase the energy density of biowaste effectively. To understand the torrefaction characteristics of different biowaste and the influences of different torrefaction conditions, four typical biowaste were selected to carry out the torrefaction experiments. The physical and chemical properties of different biowaste prior to and after torrefaction were analyzed and compared. Experimental results show that the contents of elemental carbon and caloric value of the four biowaste were significantly increased after torrefaction. The increase of combustible and caloric value in bamboo was the greatest among the four biowaste. The caloric value of bamboo can be increased from 1526 kcal/kg to 6104 kcal/kg after 300oC and 1 hour torrefaction. The caloric value of torrefied bamboo was almost four times as the original. The increase of elemental carbon content in wood was the greatest (from 41.03% to 75.24%), and the next was bamboo (from 47.07% to 74.63%). The major parameters which affected the caloric value of torrefied biowaste followed the sequence of biowaste kinds, torrefaction time, and torrefaction temperature. The optimal torrefaction conditions of the experiments were bamboo torrefied at 300oC for 3 hours, and the corresponding caloric value of torrefied bamboo was 5953 kcal/kg. This caloric value is similar to that of brown coal or bituminous coal

    Waste to Biofuel by Torrefaction Technology

    Get PDF
    Torrefaction is one of waste to energy (WTE) technologies developing in Taiwan recently, which can reduce the moisture and impurities and increase the energy density of biowaste effectively. To understand the torrefaction characteristics of different biowaste and the influences of different torrefaction conditions, four typical biowaste were selected to carry out the torrefaction experiments. The physical and chemical properties of different biowaste prior to and after torrefaction were analyzed and compared. Experimental results show that the contents of elemental carbon and caloric value of the four biowaste were significantly increased after torrefaction. The increase of combustible and caloric value in bamboo was the greatest among the four biowaste. The caloric value of bamboo can be increased from 1526 kcal/kg to 6104 kcal/kg after 300oC and 1 hour torrefaction. The caloric value of torrefied bamboo was almost four times as the original. The increase of elemental carbon content in wood was the greatest (from 41.03% to 75.24%), and the next was bamboo (from 47.07% to 74.63%). The major parameters which affected the caloric value of torrefied biowaste followed the sequence of biowaste kinds, torrefaction time, and torrefaction temperature. The optimal torrefaction conditions of the experiments were bamboo torrefied at 300oC for 3 hours, and the corresponding caloric value of torrefied bamboo was 5953 kcal/kg. This caloric value is similar to that of brown coal or bituminous coal

    Waste to Biofuel by Torrefaction Technology

    Get PDF
    Torrefaction is one of waste to energy (WTE) technologies developing in Taiwan recently, which can reduce the moisture and impurities and increase the energy density of biowaste effectively. To understand the torrefaction characteristics of different biowaste and the influences of different torrefaction conditions, four typical biowaste were selected to carry out the torrefaction experiments. The physical and chemical properties of different biowaste prior to and after torrefaction were analyzed and compared. Experimental results show that the contents of elemental carbon and caloric value of the four biowaste were significantly increased after torrefaction. The increase of combustible and caloric value in bamboo was the greatest among the four biowaste. The caloric value of bamboo can be increased from 1526 kcal/kg to 6104 kcal/kg after 300oC and 1 hour torrefaction. The caloric value of torrefied bamboo was almost four times as the original. The increase of elemental carbon content in wood was the greatest (from 41.03% to 75.24%), and the next was bamboo (from 47.07% to 74.63%). The major parameters which affected the caloric value of torrefied biowaste followed the sequence of biowaste kinds, torrefaction time, and torrefaction temperature. The optimal torrefaction conditions of the experiments were bamboo torrefied at 300oC for 3 hours, and the corresponding caloric value of torrefied bamboo was 5953 kcal/kg. This caloric value is similar to that of brown coal or bituminous coal

    Bilateral Superficial Cervical Plexus Block Combined with General Anesthesia Administered in Thyroid Operations

    Get PDF
    We investigated the analgesic efficacy of bilateral superficial cervical plexus block in patients undergoing thyroidectomy and to determine whether it reduces the adverse effects of general anesthesia. We prospectively recruited 162 patients who underwent elective thyroid operations from March 2006 to October 2007. They were randomly assigned to receive a bilateral superficial cervical block (12 ml per side) with isotonic saline (group A; n = 56), bupivacaine 0.5% (group B; n = 52), or levobupivacaine 0.5% (group C; n = 54) after induction of general anesthesia. The analgesic efficacy of the block was assessed with: intraoperative anesthetics (desflurane), numbers of patients needing postoperative analgesics, the time to the first analgesics required, and pain intensity by visual analog scale (VAS). Postoperative nausea and vomiting (PONV) for 24 h were also assessed by the “PONV grade.” We also compared hospital stay, operative time, and discomfort in swallowing. There were no significant differences in patient characteristics. Each average end-tidal desflurane concentration was 5.8, 3.9, and 3.8% in groups A, B, and C, respectively (p < 0.001). Fewer patients in groups B and C required analgesics (A: B: C = 33:8:7; p < 0.001), and it took longer before the first analgesic dose was needed postoperatively (group A: B: C = 82.1:360.8:410.1 min; p < 0.001). Postoperative pain VAS were lower in groups B and C for the first 24 h postoperatively (p < 0.001). Incidences of overall and severe PONV were lower, however, there were not sufficient numbers of patients to detect differences in PONV among the three groups. Hospital stay was shorter in group B and group C (p = 0.011). There was no significant difference in operative time and postoperative swallowing pain among the three groups. Bilateral superficial cervical plexus block reduces general anesthetics required during thyroidectomy. It also significantly lowers the severity of postoperative pain during the first 24 h and shortens the hospital stay
    corecore